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Notation
Probability distribution characteristics:

P probability measure
p(x|y) probability density function (pdf) of X|Y
ℓ(x|y) logarithm of pdf of X|Y
X| · · · full-conditional distribution of X, i.e.

distribution of X given all other random elements
EX expected value of a random vector X

varX variance matrix of a random vector X

Families of probability distributions:

D{x} Dirac degenerate distribution at x
N (µ, σ2) normal distribution with mean µ and variance σ2 > 0
φ(y;µ, σ2) probability density function of N (µ, σ2)
Nk (µ, Σ) k-variate normal distribution with mean µ

and variance matrix Σ ≥ 0
φ(y;µ,Σ) probability density function of Nk (µ, Σ)

TN (µ, σ2, a, b) univariate normal distribution with mean µ

and variance σ2 > truncated to interval (a, b) ⊂ [−∞,∞]
Unif (a, b) uniform distribution on an open finite interval (a, b)

Unif {a1, . . . , an} uniform distribution on a set {a1, . . . , an}
Beta (α, β) Beta distribution with parameters α > 0 and β > 0

DirG (α) G-dimensional Dirichlet distribution with parameters
α = (α1, . . . , αG)⊤, αg > 0

Pois (λ) Poisson distribution with parameter λ > 0
Bernoulli (p) Bernoulli trial with probability of success p ∈ (0, 1)

Bi (n, p) binomial distribution – n independent Bernoulli (p) trials
MultG (n,p) G-variate multinomial distribution of size n and

probabilities p = (p1, . . . , pG)⊤, p1 + · · ·+ pG = 1, pg > 0
Γ (α, β) Gamma distribution with shape α > 0 and rate β > 0,

E Γ (α, β) = α
β

Wd (S, ν) Wishart distribution of dimension d

with scale matrix S > 0 and ν > d− 1 degrees of freedom,
E Wd (S, ν) = nS

IWd (S, ν) inverse Wishart distribution of dimension d

with scale matrix S > 0 and ν > d− 1 degrees of freedom,
Σ ∼ IWd (S, ν)⇔ Σ−1 ∼ Wd (S, ν)
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Special symbols:

diag(a1, . . . , an) a diagonal matrix with elements ai on the diagonal
diag(A) the diagonal of a matrix A
|A| determinant of a matrix A

Tr(A) trace of a matrix A
a⊤,A⊤ transposition of a vector a and of a matrix A

A−1 inverse matrix to a matrix A
A > 0 positive-definite matrix A
A ≥ 0 positive semi-definite matrix A

0n n-long vector of zeros
On×m n×m zero matrix

1n n-long vector of ones
In unit matrix of order n, diag(1n)

1A(a) = 1(a∈A) indicator function, 1 if a ∈ A, 0 otherwise
!= find a solution of a system of equations

:= define
+= add the following value to the current one
−= subtract the following value from the current one
∗= multiply the current value by the following one
/= divide the current value by the following one

m : n {m,m+ 1, . . . , n} in algorithmic notation
Γ(·) gamma function

B (α, β) beta function
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List of acronyms
ACF autocorrelation function
AIC Akaike information criterion

AGQ adaptive Gaussian quadrature
BDA Bayesian data augmentation
BIC Bayesian information criterion

BUGS Bayesian inference using Gibbs sampling
DIC deviance information criterion

ECDF empirical cumulative distribution function
EM expectation-maximization (algorithm)
ET equal-tailed (credible intervals)

EU-SILC European Union – Statistics on Income and Living Conditions
GLMM generalized linear mixed-effects model

HPD highest posterior density (credible intervals)
JAGS just another Gibbs sampler
LME linear mixed-effects (model)
MBC model-based clustering

MCMC Markov chain Monte Carlo
MLE maximum likelihood estimator
PBC primary biliary cholangitis

pdf probability density function
SLLN strong law of large numbers

wrt with respect to
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Introduction
Scientific progress in the information era is based on the constant collection of
data. As time passes, medical studies, population surveys, etc. become more
sophisticated, collect more and more data of diverse nature or even follow the
same units over longer periods of time. However, if we are to learn from them
in the future, the development of statistical methods for analysing these complex
datasets must keep pace.

Within this thesis we will be particularly interested in longitudinal (panel)
data gathered repeatedly on the same units over time. Though, the units could
be considered independent among themselves, the several observations from the
same unit cannot. Moreover, the data come in diverse forms: from categories of
binary, ordinal or nominal nature, through count outcomes, to specific numeric
values. Plenty univariate models for treating such types of outcomes have already
been proposed. Among the most favourite univariate models for longitudinal data
are the generalized linear mixed-effects models, which can adapt to any type of
outcome (Laird and Ware, 1982; Stiratelli et al., 1984; Jiang, 2007). However,
joint modelling of potentially highly correlated outcomes of different type evades
broad attention. The general idea for combining random-effects models was pro-
vided by Fieuws and Verbeke (2004).

Even though some reasonable statistical model for multivariate longitudinal
mixed-type data is found, the reality is often much more complicated. Close
explorative analysis may reveal that the reason why many of the studied units do
not fit the supposed general trend is that they belong to different subgroups of
their own characteristics. Luckily, Banfield and Raftery (1993) already proposed
a methodology for capturing the different patterns and giving an order to such
heterogeneous data instead of averaging them together. Although they introduced
the model-based clustering methodology only for Gaussian mixtures, it was only
a matter of time before it would be applied to more complex systems such as the
longitudinal data (Molenberghs and Verbeke, 2005). Nevertheless, there is less
improvement in the clustering of several longitudinal outcomes jointly that would
also provide a ready to use software implementation. Though, several options are
available, they do not fulfil all our demands. Proust-Lima et al. (2017) model
only outcomes of the same type. Grün and Leisch (2008) cluster mixed-type
data under the independence of the outcomes, which is far from the real world
experience. The solution to the outlined problem that is the closest to our ideas
and imagination is the work of Komárek and Komárková (2013) who jointly model
numeric, binary and count outcome.

Nevertheless, our ambitions for the model and its capabilities are even higher.
We would like to cover any combination of several possibly highly correlated
numeric, count, binary, ordinal and general categorical outcomes in one single
model. Moreover, we would like to give future analysts a freedom in specification
of the form of heterogeneity within the data depending on their expectations.
During our research we even decided to address several issues such as the choice
of the number of underlying groups or missing outcome values. In four years of
our research we developed such a model and provided our own implementation
in the free statistical software (R Core Team, 2022).
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This thesis mainly consists of two publications in impacted journals:

• J. Vávra and A. Komárek. Classification based on multivariate mixed type
longitudinal data: With an application to the EU-SILC database. Ad-
vances in Data Analysis and Classification, 2022. doi: https://doi.org/
10.1007/s11634-022-00504-8.

This paper presents an initial statistical model for clustering multivariate
longitudinal data of mixed type. Binary and ordinal outcomes are modelled
by thresholded latent numeric outcomes. Multivariate linear mixed-effects
model is supposed for all numeric outcomes (both observed and latent).
Model-based clustering approach is applied to allow for different evolution
patterns to capture hidden heterogeneity within the data.

• J. Vávra, A. Komárek, B. Grün, and G. Malsiner-Walli. Clusterwise mul-
tivariate regression of mixed-type panel data. Submitted, available as pre-
print. doi: https://doi.org/10.21203/rs.3.rs-1882841/v1.

The main objective of this follow-up paper was to allow for more outcome
types. Therefore, the threshold concept model was replaced by general-
ized linear mixed-effects models where a large number of combinations of
distributional families and link functions are potentially available. Logistic
regression, ordinal logit regression and multinomial regression were used for
binary, ordinal and general categorical outcomes, respectively. The imple-
mentation also allowed to overcome the issue of missing outcome values.
In addition, the problem of a priori unknown number of mixture compo-
nents was solved by the sparse finite mixtures – a methodology originally
developed by our co-authors Bettina Grün and Gertraud Malsiner-Walli.

Progress in our research, including real data analyses, have been presented at
several international conferences. Some contributions have even been included
within the conference proceedings:

• J. Vávra and A. Komárek. Identification of Temporal Patterns in Income
and Living Conditions of Czech Households: Clustering Based on Mixed
Type Panel Data from the EU-SILC Database. 38th International Con-
ference on Mathematical Methods in Economics, Conference Proceedings,
612–617, 2020.

• J. Vávra and A. Komárek. Clustering Based on Multivariate Mixed Type
Longitudinal Data with an application to the EU-SILC database. Proceed-
ings of the 22nd European Young Statisticians Meeting, 148–152, 2021.

• J. Vávra. GLMM Based Segmentation of Czech Households Using the
EU-SILC Database. Proceedings of the 39th International Conference on
Mathematical Methods in Economics, 505–510, 2021.

• J. Vávra and A. Komárek. GLMM Based Clustering of Multivariate Mixed
Type Longitudinal Data. Proceedings of the 36th International Workshop
on Statistical Modelling, 337–342, 2022.
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This thesis compiles the listed publications into one clear document of unified
notation. Many aspects of the two suggested modelling approaches are analo-
gous, hence, mentioned only once. On the other hand, the major differences are
highlighted and compared in different (sub)sections.

The thesis opens with the introduction to the notation used for longitudi-
nal data of a mixed type. Then, real datasets are introduced: well-known PBC
dataset which continuously serves as an illustrative example for our modelling
techniques and the EU-SILC database. Chapter 2 introduces different approaches
for modelling longitudinal data and explains how the highly correlated outcomes
are modelled jointly by one multivariate model. Once the statistical models are
fully established, we introduce the model-based clustering framework for dividing
units into several homogenous groups and show how it is applied to both sug-
gested statistical models in Chapter 3. Estimation and inference is performed in
Bayesian fashion, hence, we dedicate Chapter 4 to establish the prior distributions
for model parameters and have a quick overview of the posterior distribution.
MCMC methods (Gibbs sampling and Metropolis proposals) explore this very
complex posterior distribution. The design of the used samplers is theoretically
justified for the two models separately in Chapters 5 and 6. These chapters are
closed by the most important results of the performed simulation study. Chap-
ter 7 contains details about the implementation including several frequently used
algorithms. The thesis concludes with the detailed analysis of the longitudinal
data on the living conditions of Czech households from EU-SILC database in
Chapter 8.
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1. Longitudinal mixed-type data
The longitudinal data or often called panel data arise when a given set of outcomes
is observed regularly on a studied unit. For example, a patient is obliged to
regularly visit a doctor for a unified medical examination (a series of blood tests,
etc.), a household each year fills a questionnaire of a unified form. Functional
data satisfy such a condition too, however, under much higher frequency, which
makes the data seem as several independent smooth curves. Here, only several
observations per observed study unit will be assumed, however, the sample size
of the independent units is assumed to be large.

Let us declare the notation precisely. In total, R different outcomes denoted
by Y r, r = 1, . . . , R will be observed. The dataset consists of n independently
behaving units. A unit i, i = 1, . . . , n, is observed at ni time points ti,1, . . . , ti,ni

(each unit is allowed to be observed for a different number of times ni ∈ N). The
following notation will be kept throughout the thesis:

• Y r
i,j – a single observation of an outcome r by a unit i at a time point j,

• Y r
i = {Y r

i,j, j = 1, . . . , ni} – a vector of all observations of outcome r by
a unit i,

• Y r = {Y r
i,j, i = 1, . . . , n, j = 1, . . . , ni} – all observations of outcome r,

• Yi = {Y r
i , r = 1, . . . , R} – a collection of all observations of all outcomes

by a unit i,

• Y = {Yi, i = 1, . . . , n} – a collection of all observed data,

where i = 1, . . . , n, j = 1, . . . , ni, r = 1, . . . , R. Alongside the outcomes of inter-
est, many other additional variables are recorded and may be used as explanatory
variables, especially, the time points ti,j are considered to be a typical covariate.
Analogously as before, we denote by

• Ci,j = {ti,j, . . .} – the covariate values of a unit i at a time point j,

• Ci = {Ci,j, j = 1, . . . , ni} – a collection of the covariate values of a unit i
from all the time points,

• C = {Ci, i = 1, . . . , n} – a collection of all the covariate values,

where i = 1, . . . , n, j = 1, . . . , ni. Hence, the couple {Y, C} represents the whole
dataset at our disposal that consist of n independent blocks {Yi, Ci}.

The letters for indices i = 1, . . . , n, j = 1, . . . , ni and r = 1, . . . , R will be
reserved for this meaning throughout the whole thesis unless stated otherwise.
Hence, we shall simplify the expressions by this convention. Nevertheless, in case
the range of possible values has to be restricted, the restriction will be specified.
We will often have to restrict the index r based on the type of the corresponding
outcome.

11



1.1 Types of outcomes considered
We assume R outcomes of interest in total, let us denote by R the index set
for these outcomes, i.e. R = {1, . . . , R}. Commonly, all R outcomes are of the
same type and a multivariate version of statistical model is developed. However,
here we focus on mixed-type data, that is, when there are groups of outcomes of
different natures. Here we list the outcome types and the corresponding notation.

First, a typical and most informative outcome is the numeric outcome, distri-
bution of which could be considered continuous, e.g. concentration of a substance
of interest in a blood sample or the overall income of the household. The indices
corresponding to numeric outcomes will be denoted by RNum ⊂ R.

Slightly less informative are count outcomes expressing total number of spe-
cific instances, e.g. number of events observed in a certain period of time or the
platelet count within the blood sample. In some circumstances, there could be
an argument for considering such an outcome rather as numeric, however, we still
distinguish this specific type of outcome because it may demand a special type
of model such as Poisson regression. Hence, the indices corresponding to count
outcomes will be denoted by RPoi ⊂ R.

Next, we have to deal with categorical outcomes, where the recorded numbers
correspond to a certain category. The most elementary case is the binary type of
outcome, where only two levels are distinguished. Usually, level 1 denotes a suc-
cess in some criterion (e.g. presence of a given medical symptom or affordability
of a certain luxury within the household), while level 0 stands for the opposite.
The indices corresponding to binary outcomes will be denoted by RBin ⊂ R.

In case of Kr > 2 levels, it is beneficial to distinguish an ordinal outcome from
the nominal (general categorical) one. The ordered levels 0 < 1 < · · · < Kr − 1
may represent a scale from the most negative to the most positive outcome, e.g.
self-evaluation of given criterion on a scale from 1 to 10. It may even be a result
of categorization of a numeric outcome. The indices corresponding to ordinal
outcomes will be denoted by ROrd ⊂ R.

General categorical outcomes of Kr > 2 levels without any evident ordering
cannot utilize the ordinality for a simpler model and, hence, have to be sepa-
rated into an individual group. The indices corresponding to general categorical
outcomes will be denoted by RCat ⊂ R.

Prior the analysis, the analyst decides, into which one of the sets RNum, RPoi,
RBin, ROrd, RCat each index r ∈ R belongs. Which means that these sets are
disjoint and RNum ∪RPoi ∪RBin ∪ROrd ∪RCat = R. Many of the later notations
will depend on the type of the considered outcome. In such a case, we abbreviate
the types by letters {N,P,B,O,C} and declare a function declaring a type of
an outcome r ∈ R:

t(r) := type(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N, if r ∈ RNum,

P, if r ∈ RPoi,

B, if r ∈ RBin,

O, if r ∈ ROrd,

C, if r ∈ RCat.

If each of the types appears at most once, we will specify the type in the indexation
by the letters directly, e.g. Y N

ij instead of Y r
ij, r ∈ RNum.

12



1.2 PBC dataset
This dataset is named after primary biliary cirrhosis (PBC) an autoimmune dis-
ease slowly leading to liver decompensation. In 2014, it was renamed to primary
biliary cholangitis (still fitting the abbreviation PBC) to differentiate this autoim-
mune disease from the cirrhosis which is only a feature of advanced stadium.

This dataset was gathered at the Mayo Clinic between 1974 and 1984 to
monitor patients suffering from this disease. Moreover, a case-control study was
performed to evaluate the effect of the drug D-penicillamine. Out of 424 eligible
patients, only 312 cases consented to and participated in the randomized trial.
For these randomized patients a large variety of biomedical markers (outcomes)
has been recorded, while the remaining 112 have undergone only basic tests. After
the initial medical examination, regular visits were scheduled at 6 months, 1 year,
and annually thereafter. In case of worsening the medical conditions, extra visits
were undertaken, however, not all tests were performed, which leaves some blank
spaces within the dataset.

1.2.1 Goals and restriction to PBC910

Researchers (Dickson et al., 1989; Therneau and Grambsch, 2000) aimed to esti-
mate the effect of biomedical markers and other patients characteristics on sur-
vival, for which the well known Cox model was used.

Our goals will be slightly different. We want to model directly the chosen and
highly related markers (of diverse nature) and discover several different trends,
some of which may even indicate worsening of the medical condition of a patient.
The discovered groups of similar characteristics could be considered as a prognosis
groups. Based on the available data of a newly observed patient, we would classify
this patient into one of these prognosis groups and then treated him accordingly.

Such an approach was already used by Komárek and Komárková (2013),
where they limited the analysis to the dataset PBC910 available in package
mixAK (Komárek and Komárková, 2014). PBC910 consists of only n = 260 pa-
tients still alive (without any liver transplantation) after 910 days (2.5 years).
Only the data observed within this 2.5 year-long period were used to build a sta-
tistical model capable of classifying any other patients with measurements from
this initial period. The vast majority (178) of patients have ni = 4 visits recorded
within this period. However, there are also patients included where only a single
visit is available.

We will follow the steps of Komárek and Komárková (2013) and perform
a similar analysis under an extended statistical model. Although, we shall start
with the original pbcseq dataset (library survival) since it offers wider variety of
interesting outcomes than PBC910, the notation PBC910 will be kept throughout
the thesis.

1.2.2 Outcomes of interest and data summary
Laboratory examinations provide several numeric outcomes regarding concentra-
tions of certain substances in a blood sample, e.g. albumin, alkaline phosphotase,
cholesterol, etc. However, the primary numeric outcome for our analysis will be

13



serum bilirubin [mg/dl] (bili) proven to be associated with survival by a Cox
model. To normalize the values we use logarithmic transformation.

The variable platelet count (platelet) declaring the number of platelets per
ml3/1000 in a span of several tens to hundreds could be considered both count
and numeric outcome with a slightly skewed distribution.

There are also a few binary indicators: presence of hepatomegaly or enlarged
liver (hepato), presence of ascites or presence of blood vessel malformations in
the skin, but only the first one will be used throughout the thesis. The stage
variable is a perfect ordinal variable, however, requires a biopsy to determine
the histologic stage of the disease which may not be available for newly observed
patient. Hence, we use the other available ordinal outcome edema declaring the
seriousness of edema by 0 (no edema), 0.5 (untreated or successfully treated
edema) or 1 (edema despite diuretic therapy).

Figure 1.1 displays longitudinal profiles of n = 260 patients in first 910 days
who are still alive at the end of this period. The dark blue patient (id = 220) has
increasing trend in bilirubin concentration as well as decreasing platelet count,

0.0 0.5 1.0 1.5 2.0 2.5

−
2

−
1

0
1

2
3

Log(bilirubin [mg/dl])

Time [years]

0.0 0.5 1.0 1.5 2.0 2.5

0
10

0
20

0
30

0
40

0
50

0

Platelet count

Time [years]

0.0 0.5 1.0 1.5 2.0 2.5

Presence of hepatomegaly

Time [years]

No

Yes

0.0 0.5 1.0 1.5 2.0 2.5

Seriousness of edema

Time [years]

0

0.5

1

Figure 1.1: PBC910 longitudinal dataset, two patients highlighted. Outcomes of
interest: serum bilirubin on log-scale (numeric), platelet count (count), presence
of hepatomegaly (binary) and seriousness of edema (ordinal).
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which may be a sign of worsening medical condition compared to the grey patient
(id = 263). The slight random shifts of the profiles of categorical outcomes reveal
not only almost perfect timing of the visits (with respect to the study design),
but also the sparsity of severe edema cases (23 out of 918 observations). Presence
of hepatomegaly is almost evenly distributed (45.39%).

Apart from evolution in time, we should also consider the effect of age (at the
entry to the study) and sex. In Figure 1.2, we plot the averaged values for each
patient against the age while distinguishing the gender. We immediately notice
the low frequency of males (27 out of 260) within the dataset as well as hints
of the trend with increasing age possibly different between the sexes. We should
also consider the possible effect of randomization to placebo (125 out of 260) and
D-penicillamine drug users (135 out of 260).

Finally, we have to address the relationships among the outcomes themselves.
Raw t-tests reveal significant differences in serum bilirubin and platelet count with
respect to different levels of binary and ordinal outcomes. The negative value
of Pearson’s correlation coefficient (−0.11) between the two numeric outcomes
confirms a subtle association between the two outcomes.
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Figure 1.2: PBC910 longitudinal dataset. Outcomes of interest averaged for each
patient; displayed with respect to age and sex (blue for males, red for females).
Bold lines are simple linear regression estimates.
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1.3 EU-SILC database
The European Union Statistics on Income and Living Conditions database (EU-
SILC) is yet another example of longitudinal dataset with outcomes of diverse
nature. This still ongoing instrument was launched in 2003 by core members
of the European Union with the goal to collect timely and comparable cross-
sectional and longitudinal multidimensional microdata on income, poverty, social
exclusion and living conditions. Soon all members of the EU and other European
countries including Iceland, Norway and Switzerland agreed to participate in this
project. The reference population includes all private households of the respective
countries and outcomes which are collected annually via questionnaires.

Though, a comparison of living conditions across all European states is one of
the main goals, it is rather ambitious in the scope of our research. Here we will
limit ourselves to the subset of Czech households observed from 2005 to 2020.

1.3.1 Design of the study
In general, there are two types of data:

• cross-sectional data pertaining to a given time or a certain time period with
variables on income, poverty, social exclusion and other living conditions;

• longitudinal data pertaining to individual-level changes over time, observed
periodically over a four-year period.

Though, they seem to be different, the cross-sectional dataset covers the house-
holds within the longitudinal dataset. Hence, if some outcome is not covered
by the longitudinal data, one can find it by pairing a household with the corre-
sponding one within the cross-sectional dataset which is in general larger. More-
over, each year an independent module focusing on different aspects (material
deprivation, health, . . . ) is added. By the nature of our research, our interest
lies primarily in the longitudinal dataset covering the same primary outcomes
throughout the whole time span.

Each year, the responsible authority (Czech Statistical Office) is obliged to
update the set of interviewed households, which is induced by so called rotational
design illustrated in Figure 1.3 when the system is fully established. As is sketched

Figure 1.3: Illustration of a simple rotational design once fully established; taken
from the official EU-SILC Methodological Guidelines available at (EUS).
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in Figure 1.4, the study had to be started by 4 sub-panels: first only for cross-
sectional purposes, the second sub-panel is requested to participate only for two
years, the third for three years and finally the fourth one for the planned duration
of ni = 4 years. In the Czech Republic, more than 7 000 households participated
in the first year of the study. Then, each year a quarter of households (the oldest
panel) is dropped to be replaced by a set of completely different households of
comparable size. By this annual process, it is guaranteed that each household
is observed for exactly ni = 4 consecutive years with exception of negligible
percentage of households lost during the follow-up for diverse reasons. In total,
n = 27 386 Czech households were observed for exactly ni = 4 years between
2005 and 2020.

The data are collected via questionnaires filled during an interview with
an adult respondent representing the household. Many variables are measured
at a household level which will also be our reference sample unit in our statisti-
cal model later. However, wide variety of variables regarding income, education,
basic labour information are measured at a personal level. For simplicity of our
model, we avoid nested sample units by aggregation to household-level variables.

1.3.2 Outcomes of interest
The list below contains outcomes of interest grouped by the corresponding type:

• Numeric outcomes

– HX090 – Equivalised total disposable income [EUR/year]
The sum of gross personal income components (cash, benefits, al-
lowances, rental income, interests, . . . ) of all household members mi-
nus regular taxes (on wealth, income), inter-household cash transfers
and social insurance; all divided by the Equivalised household size.

Figure 1.4: Illustration of a simple rotational design in the first years of the study;
taken from the official EU-SILC Methodological Guidelines available at (EUS).

17



– HS130 – Lowest income to make ends meet [EUR/month]
Respondent’s self-assessed indication of the very lowest net monthly
income that the household would have to have in order to make ends
meet, that is to pay its usual necessary expenses (properly defined
when asked).

• Binary outcomes (Yes / No)

– HS040 – Affordability of a one week holiday
Capacity to afford paying for a one week (7 days) annual holiday away
from home (yes, if the whole household can afford it regardless of
whether the household wants it).

– HS060 – Afford to pay for unexpected expenses
Capacity to face unexpected financial expenses (surgery, a funeral,
major repairs in the house, etc. totalling the equivalent of 1/12th of
the national at-risk-of-poverty threshold), that is to pay the expenses
through its own resources without taking any loan.

• Ordinal outcomes

– HS120 – Ability to make ends meet
Thinking of the household’s total income, respondent feels to be able
to make ends meet (to pay for its usual necessary expenses):

1. with great difficulty,
2. with difficulty,
3. with some difficulty,
4. fairly easily,
5. easily,
6. very easily.

– HS140 – Financial burden of the total housing cost
The respondent finds the total housing costs including mortgage repay-
ment (instalment and interest) or rent, insurance and service charges
(sewage removal, refuse removal, regular maintenance, repairs and
other charges):

1. a heavy financial burden,
2. a slight financial burden,
3. not a financial burden at all.

• Categorical outcomes (Yes / No – cannot afford / No – other reason)

– HS090 – Do you have a computer?
– HS110 – Do you have a car?

More details about the definition of these variables is provided by the official
EU-SILC Methodological Guidelines available on-line at (EUS).

In applications, we rather work with log-transformed income variables, where
a few of negative disposable income values are replaced by 0. The answer to
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binary outcomes should be Yes, if the household can afford a one week holiday
or to pay for unexpected expenses despite not doing so in the last year. Ordinal
outcomes aim to capture the respondent’s feeling about the financial capacities
of the household after they have been numerically evaluated. The possession
indicators (categorical outcomes) were yes/no questions with the option to specify
the reason for not owning the item of interest.

In Figure 1.5 depicting the evolution in time, one can notice a short plateau in
the evolution of the outcomes, especially, the Equivalised total disposable income.
It suggests that many households were impacted by the economical crisis (Euro-
pean sovereign debt crisis) in 2010. Nevertheless, some households may remain
untouched by the crisis, which suggests possible heterogeneity within the data.
Certainly, we can expect close relations between the outcomes, for example, the
higher the disposable income, the higher the chance to afford a week holiday away
from home is expected. Close pairwise exploratory analysis confirmed high corre-
lations among the outcomes, which should not be neglected during the statistical
modelling.

1.3.3 Covariates
The dataset also offers plenty of covariates that may be related to the outcomes
of interest.

• Time will be considered as the most important since heterogeneity with
respect to evolution in time is expected. We define the time covariate as
the number of years past the beginning of 2005, which limits the time into
the interval [0, 16). Note that the interviews in the Czech Republic were
held in either Q1 or Q2.

• Equivalised household size (HX050) expresses how large the household is
while taking the age of its members into consideration. The head of the
household (respondent) has a unit weight, while other members have either
0.5 (older than 14) or 0.3 (younger than 14).

• Level of urbanisation was divided by the population density and minimum
population into the following categories:

1. rural – thinly-populated area (non-urban),
2. town – intermediate area (at least 300 inhabitants per km2, minimal

population of 5 000),
3. city – densely populated area (at least 1500 inhabitants per km2, min-

imal population of 50 000),
4. Prague – the highly-populated capital city.

The fourth category was additionally created knowing that the capital city
is in many aspects very distinct from the rest of the republic, see for example
Figure 1.6. Any other regional (DB040 – NUTS 2 statistical regions) effects
are neglected.
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• The highest ISCED (education) level achieved within the whole household
rarely attains the lowest possible option of primary education. Hence, we
merge it with lower-secondary education (label ”Lower”). Then, follows
the most common upper-secondary education (label ”Secondary”). Finally,
the third category contains both post-secondary and the tertiary education
level with a university degree (label ”Higher”).

• Presence of student or baby indicate whether some household member cur-
rently attends any educational institution or is younger than 3 years, re-
spectively.

• Dwelling type (HH010) classifies households based on the building it lives in.
There are distinguished the following types:

1. detached house,
2. semi-detached or terraced house,
3. apartment or flat in a building with less than 10 dwellings,
4. apartment or flat in a building with 10 or more dwellings,
5. some other kind of accommodation.

• Household type (HX060) classifies according to the age composition and role
each member has:

5 - one person household,
6 - 2 adults, no dependent children, both adults under 65 years,
7 - 2 adults, no dependent children, at least one adult 65 years or more,
8 - other households without dependent children,
9 - single parent household, one or more dependent children,

10 - 2 adults, one dependent child,
11 - 2 adults, two dependent children,
12 - 2 adults, three or more dependent children,
13 - other households with dependent children,

where the term dependent children is defined as:

– household members aged 17 or less,
– economically inactive household members aged between 18 and 24 liv-

ing with at least one parent.

These covariates will be used to form the predictor of our regression models
since they have potentially very important effect on the observed outcomes as
Figure 1.7 suggests.
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Figure 1.5: EU-SILC dataset. Evolution of outcomes of interest in time. Numeric
outcomes are accompanied by a lowess smoothed curve. Level proportions in each
year are depicted for categorical outcomes.
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Figure 1.6: EU-SILC dataset. Median characteristics by NUTS 2 statistical re-
gions of the Czech Republic.
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Figure 1.7: EU-SILC dataset. Distribution of chosen outcomes (numeric – box-
plots without outliers, categorical – proportions) with respect to different co-
variates (Level of urbanization, Highest educational level achieved, Dwelling type,
Household type).
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2. Mixed-effects models
When working with longitudinal data introduced in the previous chapter, one
enjoys the independence among the units but has to acknowledge the correlation
among observations coming from the same unit. Given unit i = 1, . . . , n, the
outcome values Y r

i,j, j = 1, . . . , ni cannot be considered completely independent
for any outcome r = 1, . . . , R. Hence, a model for the whole Y r

i has to be
supposed. Moreover, when outcomes cannot be considered independent either,
the outcomes Yi have to be modelled all together as a block. Nevertheless, the
concept of random effects allows us to work under independence and still benefit
from it.

Laird and Ware (1982) introduced the so called classical normal linear mixed-
effects model (LME) for a numeric outcome r ∈ RNum. Each of the independent
units i has its own set of dR

r -dimensional random effects bri which are assumed
to be centred and normally distributed independently of each other, i.e. bri

iid∼
NdR

r
(0, Σr). These latent random effects represent the unit-specific propensity for

outcome r with respect to covariates zri,j. Nevertheless, they remain unobserved
and serve only as a tool to establish the independence structure given random
effects:

Y r
i,j

⃓⃓⃓
bri ; Ci,j ∼ N

(︂
ηri,j, σ

2
r

)︂
, where ηri,j =

(︂
xri,j

)︂⊤
βr +

(︂
zri,j

)︂⊤
bri (2.1)

is the linear predictor formed out of covariates Ci,j and their fixed effects βr and
the random effects bi. Later, we will rather work with the precision parameter
0 < τr = (σ2

r)
−1 than the model error variance σ2

r > 0. To introduce notation
used for probability density functions and log-likelihood, we remind the reader
that single observation Y r

i,j has pdf

pN
(︂
Y r
i,j = y

⃓⃓⃓
bi, τr,βr; Ci,j

)︂
= φ

(︂
y; ηri,j, τ−1

r

)︂
∝ τ

1
2
r exp

{︃
τr
2
(︂
y − ηri,j

)︂2
}︃

(2.2)

and contributes to the log-likelihood by

ℓN
(︂
Y r
i,j = y

⃓⃓⃓
bi, τr,βr; Ci,j

)︂
= const. + 1

2 log (τr)−
1
2τr

(︂
y − ηri,j

)︂2
. (2.3)

The fixed part of the predictor ηF,r
i,j =

(︂
xri,j

)︂⊤
βr which is a linear combination

of regressors xri,j derived from the full covariate information Ci,j with the unknown
vector of coefficients βr of dimension dF

r , captures the overall trend. On the other
hand, the random part ηR,r

i,j =
(︂
zri,j

)︂⊤
bri which is a linear combination of regressors

zri,j derived from the full covariate information Ci,j with the subject-specific vector
of random effects bri of dimension dR

r , captures the differences between units.
Given the random effects, it holds

E [Y r
i | bri ; Ci] = ηri,j = ηF,r

i,j + ηR,r
i,j and var [Y r

i | bri ; Ci] = σ2
rIni

due to the conditional independence. However, integrating over the latent ran-
dom effects we obtain the marginal distribution of the observed outcomes of the
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following characteristics:

E [Y r
i | Ci ] = E

(︃
E
[︂
Y r
i

⃓⃓⃓
bri ; Ci

]︂)︃
= Xr

iβr + Zri0 = Xr
iβr,

var [Y r
i | Ci ] = E

(︃
var
[︂
Y r
i

⃓⃓⃓
bri ; Ci

]︂)︃
+ var

(︃
E
[︂
Y r
i

⃓⃓⃓
bri ; Ci

]︂)︃
= σ2

rIni
+ (Zri )

⊤ ΣrZri ,

where

Xr
i =

⎛⎜⎜⎜⎜⎝
(︂
xri,1

)︂⊤

...(︂
xri,ni

)︂⊤

⎞⎟⎟⎟⎟⎠ and Zri =

⎛⎜⎜⎜⎜⎝
(︂
zri,1

)︂⊤

...(︂
zri,ni

)︂⊤

⎞⎟⎟⎟⎟⎠
are the model regression matrices for unit i. Generally, the outcomes Y r

i,j become
dependent across all j = 1, . . . , ni. In the simplest case of simple random intercept
model Zri = 1ni

and, hence, cov
[︂
Y r
i,j1 , Y

r
i,j2

⃓⃓⃓
Ci
]︂

= Σr + 1(j1=j2)σ
2
r for j1, j2 =

1, . . . , ni.
The classical normal linear mixed-effects model is viable only for the numeric

outcomes RNum, where the assumption of normality is plausible. However, for the
other types of outcomes (count, binary, ordinal, general categorical) we have to
adequately adapt the model. There are however, two main paths we could take.
The first introduced in Section 2.1 transfers the binary or ordinal case to the
classical normal LME case by cutting latent numeric outcomes. In Section 2.2, we
present a more general approach through generalized linear mixed-effects models
(GLMM) which cover even more types of outcomes. For these two sections, the
specification of the distribution for the underlying random effects will be silently
avoided, only to be specified for all outcomes in the following Section 2.3 with
the aim to cover possible associations among the outcomes.

2.1 Threshold concept
McCullagh (1980) provides a discussion for regression models for ordinal types
of outcomes. The key to modelling such outcomes is the parametrization of the
probabilities of reaching each of the values. Since many ordinal outcomes arise
from numeric outcomes by grouping values in given intervals, it is only natural
to utilize this very idea for any observed ordinal outcome. Bock and Lieberman
(1970) used this very idea for modelling dichotomous items, which is also termed
as latent variable model for dichotomous variables (Long, 1997). Bock (1972) also
used the threshold concept for estimating the item parameters and latent abilities
when responses are scored in two or more nominal categories.

Assume that for each ordinal outcome category Y r
i,j ∈ {0, . . . , Kr − 1} there

exists a latent numeric outcome Y ⋆,r
i,j responsible for the observed category. This

latent outcome is purely artificial and should be viewed as an ability to excel
(high values) or to fail (low values). From the data generating point of view, we
will assume that, first, the latent numeric outcome value has been generated and
then the category was determined based on the segmentation into intervals given
by a set of thresholds −∞ = γr−1 < γr0 < · · · < γrKr−1 =∞:

Y r
i,j = k ⇐⇒ γrk−1 < Y ⋆,r

i,j ≤ γrk, (2.4)
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which is called the threshold concept (see, e.g. Albert and Chib, 1993).
In practise, neither the latent outcomes (and their distribution) nor the thresh-

olds are known. Since we are not limited in the underlying distribution, we can
choose the normal distribution for its nice properties. In our world of longitudinal
data, we suppose the classical normal LME model (2.1) for the latent outcomes
Y ⋆,r
i,j :

Y ⋆,r
i,j

⃓⃓⃓
bri ; Cri,j ∼ N

(︂
ηri,j, 1

)︂
. (2.5)

Note that we have fixed the variance of the error terms to 1 for identifiability
purposes. For the same reason (identifiability of location), one of the thresholds
has to be also fixed, e.g. the first one γr0 = 0, otherwise with a shift in the
distribution one could shift the thresholds correspondingly. We will denote by
γr =

(︂
γr1, . . . , γ

r
Kr−2

)︂⊤
the unknown ordered thresholds. Hedeker (2008) provides

a discussion for equivalence of threshold models with GLMM analogies. With
normally distributed latent variables we end up with the probit regression model.

In the presence of latent variables, it is natural to use a version of the EM-
algorithm (Dempster et al., 1977) for finding the corresponding maximum likeli-
hood estimators of the unknown parameters. However, the E-step requires non-
trivial approximations of integrals. Hence, in this thesis we focus on a Bayesian
solution to this problem which simply considers latent variables as additional
model parameters and avoids evaluation of the difficult integrals. Due to hierar-
chical structure of our model it is straightforward to derive the full-conditional
distributions which are used to construct a Gibbs sampler, see Chapter 5 for more
details.

Binary outcomes could be viewed as a special type of ordinal outcomes, be-
cause the underlying numeric outcomes could be interpreted as a propensity for
success. In such a case of Kr = 2, there are no unknown thresholds to be es-
timated. Thresholding of a binary outcome and an ordinal outcome from the
PBC910 dataset is depicted in Figure 2.1, where the density of normal distri-
bution behind is illustratively selected to fit the probability proportions to the
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Figure 2.1: PBC910 dataset. Latent thresholding of a binary (left) and an ordinal
outcome (right).
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estimated thresholds (γ0 = 0, for γ1 see Table 2.1).
The binary and ordinal outcomes modelled by this latent variable thresh-

olding approach will be denoted by t(r) = OB. Given random effects, a single
observation has the following pdf:

pOB
(︂
Y r
i,j = y

⃓⃓⃓
bri ,γ

r,βr; Ci,j
)︂

=
γr

y∫︂
γr

y−1

pN
(︂
Y ⋆,r
i,j = y⋆

⃓⃓⃓
bri , τr = 1,βr; Ci,j

)︂
dy⋆, (2.6)

where the latent numeric outcome behind has to be integrated out on the corre-
sponding interval, bounds of which are given by the thresholds and the observed
level y ∈ {0, . . . , Kr − 1}.

Bock (1972) provides a methodology for modelling any general categorical out-
come, where the lack of ordering would contradict the ordinality of a single latent
numeric outcome behind in emphthreshold concept. There has to be assumed
more than one underlying latent numeric outcome to circumvent this problem.
To be precise, an extremal concept is taken where the category y is associated
with the underlying latent latent tendency for that category which is maximal.
Hedeker (2008) points out that it is equivalent to multinomial regression, which
will be introduced later in Section 2.2.4.

2.2 Generalized linear mixed-effects models
Generalized linear mixed-effects models (GLMM) extend the classical LME model
to any distributional family of exponential type, where the conditional expected
value E [Y r

i | bi; Cri ] is tied with the linear predictor ηri,j through an appropriate
link function. Proper definition of GLMM can be found in Jiang (2007). Here we
will satisfy with specific model choices for our needs.

This extension to GLMM opens up several potential models for numeric vari-
ables by different combination of distributional families (normal, Gamma, inverse
Gaussian, . . . ) and link functions (identity, logarithm, inverse). Nevertheless, the
classical LME is sufficient in our real data applications, hence, we rather focus
on models for different data types. Except for the classical LME, we will use
log-linear mixed model for count outcomes RPoi, logistic regression with random
effects for binary outcomes RBin, ordinal logit regression for ordinal outcomes
ROrd and, finally, multinomial logit regression for general categorical outcomes
RCat. Our methodology could be extended for any combination of distributional
family and link function, however, for the sake of simplicity and clarity only these
five different types of models will be considered.

2.2.1 Model for count outcomes
Count variables (r ∈ RPoi) take values in N0. Poisson distribution is particularly
useful when modelling count variables expressing the total number of events that
has occurred during a certain time period. Negative-binomial distribution would
be useful when counting number of trials before k-th success. And one could
find even more examples of distributions for count variables depending on the
interpretation.
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Here we will assume only the Poisson count data, for which the corresponding
GLMM with canonical log link is called log-linear mixed-effects model. Since
Y r
i,j

⃓⃓⃓
bri ∼ Pois

(︂
exp{ηri,j}

)︂
, we also have E

[︂
Y r
i,j

⃓⃓⃓
bri
]︂

= var
[︂
Y r
i,j

⃓⃓⃓
bri
]︂

= exp{ηri,j}.
Given random effects, a single Poisson count observation Y r

i,j ∈ N0 has the pdf

pP
(︂
Y r
i,j = y

⃓⃓⃓
bri ,βr; Ci,j

)︂
∝ exp

{︂
yηri,j − exp{ηri,j}

}︂
(2.7)

and contributes to the log-likelihood by

ℓP
(︂
Y r
i,j = y

⃓⃓⃓
bri ,βr; Ci,j

)︂
= const. + yηri,j − exp{ηri,j}. (2.8)

If the number Y r
i,j can be interpreted as a number of events during ori,j units

of time, then the distribution should rather be Y r
i,j

⃓⃓⃓
bri ∼ Pois

(︂
ori,j exp{ηri,j}

)︂
. In

such a case, we have to redefine the predictor ηri,j to include an offset, a covariate
of fixed effect size of 1. In particular, ηri,j := ηO,r

i,j + ηF,r
i,j + ηR,r

i,j , where ηO,r
i,j is the

offset part which here takes the form of ηO,r
i,j = log ori,j.

2.2.2 Model for binary outcomes
Binary outcomes r ∈ RBin are assumed to follow Bernoulli trial distribution. The
probability of success is linked to the predictor by a suitable link function. One
can choose from wide variety of link functions. For example, the probit link (quan-
tile function of standard normal distribution) would correspond to modelling by
latent normally distributed variable by the threshold concept. Hence, here we
will avoid that option and focus on the canonical logit link logit p = log p

1−p .
The probability of a success in logistic mixed-effects regression is linked to the

linear predictor by the inverse logit function:

P
[︂
Y r
i,j = 1

⃓⃓⃓
bri ,βr; Ci,j

]︂
= logit−1

(︂
ηri,j
)︂

=
exp

{︂
ηri,j
}︂

1 + exp
{︂
ηri,j
}︂ .

Given random effects, a single binary observation y = Y r
i,j ∈ {0, 1} has the pdf

pB
(︂
Y r
i,j = y

⃓⃓⃓
bri ,βr; Ci,j

)︂
=
[︂
logit−1

(︂
ηri,j
)︂]︂y [︂

1− logit−1
(︂
ηri,j
)︂]︂1−y

, (2.9)

and contributes to the log-likelihood by

ℓB
(︂
Y r
i,j = y

⃓⃓⃓
bri ,βr; Ci,j

)︂
= yηri,j − log

(︂
1 + exp

{︂
ηri,j
}︂)︂
. (2.10)

2.2.3 Model for ordinal outcomes
There are several ways, how to generalize logit probability parametrization for the
case of ordinal outcomes r ∈ ROrd. We will model the cumulative probabilities
by cumulative logits. Hedeker (2008, Sec 6.3) points out that it is equivalent to
the threshold concept applied to latent variables following a logistic distribution.
An-alternative would be to use adjacent-categories logit (Hartzel et al., 2001, Sec.
2.2), where logarithm of ratio of probabilities of adjacent categories is modelled
by predictor shifted by category-specific intercept.
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Let us have an ordinal outcome of Kr levels. The cumulative probabilities are
modelled by

pk := P
[︂
Y r
i,j > k

⃓⃓⃓
bri ,βr, cr; Ci,j

]︂
= logit−1

(︂
ηri,j − cr,k

)︂
(2.11)

for k ∈ {0, 1, . . . , Kr − 1}, where −∞ = cr,−1 < cr,0 < cr,1 < · · · < cr,Kr−1 = ∞
are unknown ordered intercepts which shift the predictor free of an intercept
term within the fixed part for identifiability purposes. We denote by cr =
(cr,0, cr,1, . . . , cr,Kr−2)⊤ the unknown values. The probabilities pk are decreas-
ing with k, we set p−1 = P

[︂
Y r
i,j > −1

⃓⃓⃓
bri ,βr, cr; Ci,j

]︂
= 1 and end with zero

probability pKr−1 = P
[︂
Y r
i,j > Kr − 1

⃓⃓⃓
bri ,βr, cr; Ci,j

]︂
= 0. Given random effects,

a single ordinal observation y = Y r
i,j ∈ {0, 1, . . . , Kr − 1} has the pdf given by

a difference of adjacent cumulative probabilities

pO
(︂
Y r
i,j = y

⃓⃓⃓
bri ,βr, cr; Ci,j

)︂
= qy := py−1 − py (2.12)

and contributes to the log-likelihood by

ℓO
(︂
Y r
i,j = y

⃓⃓⃓
bri ,βr; Ci,j

)︂
= log qy. (2.13)

Under Kr = 2 this model specification would reduce to the previous case of
logistic regression model since the only finite term cr,0 would play the role of
intercept term within the predictor.

Note that this model formulation is based on the proportional odds assump-
tion; the log-odds differ only in the intercepts: log(pk/(1− pk)) = ηri,j − cr,k, k =
0, . . . , Kr−2. In case this assumption is violated, we would have to assume differ-
ent βr parameters for each category level. That would result in a set of different
predictors, which is used later for the raw (non-cumulative) probabilities when
modelling general categorical outcomes. A compromise would then be to identify
the covariates which violate the proportional odds assumption and make only the
corresponding fixed effects category-specific. However, we will avoid this partial
proportional odds model introduced by Peterson and Harrell (1990) for simplicity
of the model formulation since we later want to create a mixture of the specified
models.

2.2.4 Model for general categorical outcomes
Here we work with general categorical (nominal) outcomes r ∈ RCat which lack
any natural ordering. Cumulative probabilities now do not have any meaning
since the levels could be arbitrarily permuted without any consequence. Hence,
instead of generalizing the previous model for ordinal outcomes we will make
each of the probabilities proportional to the exp of category-specific predictor. In
literature this model is called multinomial logistic regression model with random
effects (Hedeker, 2008, Sec. 6.4).

Let us have a nominal outcome of Kr > 2 unordered levels. Each category
level k ∈ {0, 1, . . . , Kr− 1} is supposed to have its own linear predictor ηri,j,k, col-
lectively we denote ηri,j =

(︂
ηri,j,0, . . . , η

r
i,j,Kr−1

)︂
. It is formed by ηr,Fi,j,k =

(︂
xri,j

)︂⊤
βr,k

and ηr,ri,j,k =
(︂
xri,j

)︂⊤
bri,k where we have category-specific fixed effects βr,k and ran-

dom effects bri,k. When r ∈ RCat and βr or bri miss the index k, we understand by
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this notation a collection of these effects across all the possible k. The probability
of attaining level k ∈ {0, 1, . . . , Kr − 1} is then proportional to

P
[︂
Y r
i,j = k

⃓⃓⃓
bri ,βr; Ci,j

]︂
∝ exp{ηri,j,k}.

For identifiability purposes we have to fix ηri,j,0 = 0 by βr,0 = 0 and bi,0 = 0.
The effects are then interpreted as comparison of log odds compared to the zero
level category since log

(︂
P
[︂
Y r
i,j = k1

⃓⃓⃓
· · ·

]︂ /︂
P
[︂
Y r
i,j = k2

⃓⃓⃓
· · ·

]︂)︂
= ηri,j,k1 − ηri,j,k2 .

Bock (1972) even suggests to allow for any possible set of Kr−1 contrasts, which
we avoid for simplicity. Another way to simplify the model would be to fix the
random effects to a single set of random effects bri = bri,1 = · · · = bri,Kr−1, which
can substantially reduce the dimension of random effects. In such a case, the
random effects compare the zero category with any other category, hence, the
zero category should correspond to some reasonable baseline.

Finally, we can write down the resulting formulas for pdf and log-likelihood,
where we use the multivariate vector softmax function. Given random effects,
a single general categorical observation y = Y r

i,j ∈ {0, 1, . . . , Kr − 1} has the pdf

pC
(︂
Y r
i,j = y

⃓⃓⃓
bri ,βr; Ci,j

)︂
= softmaxy(ηri,j) =

exp{ηri,j,y}

1 +
Kr−1∑︁
k=1

exp{ηri,j,k}
(2.14)

and contributes to the log-likelihood by

ℓC
(︂
Y r
i,j = y

⃓⃓⃓
bri ,βr; Ci,j

)︂
= ηri,j,y − log

(︄
1 +

Kr−1∑︂
k=1

exp{ηri,j,k}
)︄
. (2.15)

Note that in case of Kr = 2 there would be only a single unknown predictor
related to y = 1, which gives exactly the logistic regression model presented
above in Section 2.2.2.

2.3 Random effects distribution
So far the models for outcomes were treated as independent of each other. How-
ever, that could hardly be used in practice since the outcomes in real datasets
are often highly correlated. We will overcome this problem by a simple trick with
random effects.

In the framework of mixed-effects models, the random effects bri capture the
correlation between the outcome values observed for each unit i and outcome
r ∈ R conditional on the regression model. In the multivariate setting with
several different outcome variables, the random effects are also used to capture
correlations between different outcome variables for a unit i. To this end, we
suppose a joint multivariate distribution for all random effects inspired by the
work of Fieuws and Verbeke (2004, 2006) who explore the bivariate case in detail.
Many researchers, including Komárek and Komárková (2013), have used this
methodology to join mixed models for responses of different type.

Let us denote the vector of random effects for subject i by bi = {bri , r ∈ R}.
The overall random effects vector bi is now assumed to follow a centred multi-
variate normal distribution with a general covariance matrix, i.e. it is assumed

bi
iid∼ NdR (0, Σ) , (2.16)
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where dR = ∑︁
r∈R d

R
r is the total dimension of bi and Σ > 0 is the positive-definite

covariance matrix of the random effects. A general structure is assumed for this
matrix thus allowing to capture arbitrary within-subject dependencies between
the different outcomes. However, the key assumption here is that the outcomes
are independent given the random effects. This independence disappears when
transitioning to marginal distribution of the outcomes.

Consider, for example, the case |RNum| = |R| = 2. The two numeric outcomes
are independent given random effects. Assume simple random intercept term, i.e.
ηr,Ri,j = bri . Then,

var
⎛⎝Y 1

i,j1

Y 2
i,j2

⎞⎠ = E
⎛⎝var

⎡⎣⎛⎝Y 1
i,j1

Y 2
i,j2

⎞⎠ ⃓⃓⃓⃓⃓⃓ bi; Ci
⎤⎦⎞⎠+ var

⎛⎝E
⎡⎣⎛⎝Y 1

i,j1

Y 2
i,j2

⎞⎠ ⃓⃓⃓⃓⃓⃓ bi; Ci
⎤⎦⎞⎠ =

=
⎛⎝σ2

1 0
0 σ2

2

⎞⎠+ var
⎛⎝η1,R

i,j1

η2,R
i,j2

⎞⎠ =
⎛⎝σ2

1 0
0 σ2

2

⎞⎠+ var (bi) =
⎛⎝σ2

1 0
0 σ2

2

⎞⎠+ Σ.

In this particular setting the non-diagonal elements of Σ correspond to covari-
ances between observations of different outcomes. However, how exactly the
variance matrix Σ effects the relationships between outcomes of different type is
difficult to express.

Figure 2.2 demonstrates how the value of a correlation coefficient ρ between
random intercepts of simulated numeric and binary longitudinal outcomes affects
the marginal dependencies. As expected, positive correlation increases the odds
with numeric outcome and vice versa for the negative correlation, while zero
correlation yields no marginal relationship between the two outcomes.

Indisputably, the model is able to capture some marginal relationships and
incorporates them at least partially through the variance matrix Σ, although the
associations could probably be more precisely captured by, e.g. copulas (Nelsen,
1999). Simultaneously, it allows us to work with the individual observations
as independent given the random effects and covariates, which will be heavily
exploited in the estimation part.
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Figure 2.2: Ratios of binary outcome values across different factorized values of
the numeric outcome of the simulated longitudinal dataset for n = 10 000 subjects
each of ni = 4 observations connected through random intercepts with correlation
ρ ∈ {−0.7, 0, 0.7}.
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2.4 Models for longitudinal outcomes of a mixed
type

We have proposed several approaches for modelling the individual outcomes.
Would we have to consider all possible combinations of all approaches includ-
ing the suggested alternatives we would get an immeasurable number of different
statistical models. Hence, we dedicate this section to introduce the two main
considered approaches. The initial model (Vávra and Komárek, 2022) considers
only numeric outcomes and the threshold concept for modelling categorical out-
comes. The second more advanced model (Vávra et al.) consists of individual
GLMMs.

For both options, we combine all the models for individual outcomes to evalu-
ate what is the overall contribution of one single unit to the (log-)likelihood which
would then consist of n such independent blocks. Generally, such contribution of
the observed outcomes Yi can be expressed as

p (Yi|β, . . . ,Σ; Ci) =
∫︂ ∏︂

r∈R

ni∏︂
j=1

pt(r)
(︂
Y r
i,j

⃓⃓⃓
bri ,βr, . . . ; Ci

)︂
· p(bi|Σ) dbi, (2.17)

where β = {βr, r ∈ R}, the dots stand for other unknown model parameters and
the unobserved random effects bi have to be integrated out.

2.4.1 The threshold concept model

The first model we proposed (Vávra and Komárek, 2022) combined the classical
normal LME for numeric outcomesRNum and the threshold concept for binary and
ordinal outcomes collectively denoted byROB = RBin∪ROrd andR = RNum∪ROB

since count or nominal outcomes were not considered. This model will be from
now on referred to as the threshold concept model.

Let us have a unit i and denote by YN
i and YOB

i all the outcome observations
of the corresponding type; YN

i = {Y r
i,j, j = 1, . . . , ni, r ∈ RNum}, YOB

i = {Y r
i,j, j =

1, . . . , ni, r ∈ ROB}. For the categorical outcomes we analogously define the
corresponding set of all latent numeric outcomes by Y⋆,OB

i . One of the benefits
of this model is that the collection Y⋆

i = {YN
i ,Y

⋆,OB
i } follows multivariate normal

distribution. Note that Y r
i,j = Y ⋆,r

i,j for r ∈ RNum in this notation.
First, we have to identify the latent unobserved elements – the random effects

bi and latent numeric outcomes Y⋆,OB
i . The pdf for the observed data Yi =

{YN
i ,YOB

i } is then obtained by integrating the latent elements out of the joint
pdf for {Yi, bi,Y⋆,OB

i }. After a slight regrouping of factors in (2.17) we obtain

p (Yi|β, τ ,γ,Σ; Ci) =

=
∫︂ ∫︂

p
(︂
YOB
i

⃓⃓⃓
Y⋆,OB
i ,γ

)︂
⏞ ⏟⏟ ⏞
threshold concept (2.4)

· p
(︂
YN
i ,Y

⋆,OB
i

⃓⃓⃓
bi,β, τ ; Ci

)︂
⏞ ⏟⏟ ⏞

MV LME (2.1),(2.5)

· p (bi|Σ)⏞ ⏟⏟ ⏞
(2.16)

dbi dY⋆,OB
i , (2.18)

where β = {βr, r ∈ R}, τ = {τr, r ∈ RNum}, γ = {γr, r ∈ ROrd}. The first factor
only declares the bounds for integration chosen from γ according to the observed
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categories YOB
i :

p
(︂
YOB
i

⃓⃓⃓
Y⋆,OB
i ,γ

)︂
=

∏︂
r∈ROB

ni∏︂
j=1

1(︃
γr

yr
i,j

−1, γ
r
yr

i,j

]︃ (︂y⋆,ri,j )︂ . (2.19)

The second factor is dedicated to numeric and latent numeric outcomes, for which
the classical normal LME is supposed, hence, given the random effects, there
appears a product of pdfs of univariate normal distribution:

p
(︂
YN
i ,Y

⋆,OB
i

⃓⃓⃓
bi,β, τ ; Ci

)︂
=

∏︂
r∈RNum

ni∏︂
j=1

φ
(︂
yri,j; ηri,j, τ−1

r

)︂ ∏︂
r∈ROB

ni∏︂
j=1

φ
(︂
y⋆,ri,j ; ηri,j, 1

)︂
.

(2.20)
The last factor is again a multivariate normal distribution density coming from
our assumption on the random effects (2.16):

p (bi|Σ) = φ (bi; 0; Σ) ∝ |Σ|− 1
2 exp

{︃
−1

2b
⊤
i Σ−1bi

}︃
. (2.21)

The double integral in (2.18) could be evaluated only when no categorical out-
comes are observed, R = RNum since (2.20) and (2.21) conjugate into the shape
of multivariate normal density in bi, which facilitates the integration. However,
in the presence of categorical outcomes the situation becomes problematic, es-
pecially, with high dimension of YOB

i because integration of multivariate normal
density over a given multidimensional interval consists of 2ni|ROB| summands in
general. In our estimation process via MCMC we elegantly avoid the necessity for
evaluation of such integrals. However, for some applications (e.g. calculation of
classification probabilities) we employ numerical methods (Algorithm 4 by Genz)
for approximation of the integral, see Section 7.2.

PBC910 analysis by the threshold concept model

Now we demonstrate the use of the threshold concept model on PBC910 dataset.
Estimation is done via our MCMC sampler (Chapter 5) with G = 1 clusters. The
implementation of this sampler did not, however, cover methods for accounting
for missing outcome values. Hence, we have to use the complete data rows only,
which costs 17 data rows out of the total 918.

Since count type is unavailable in this model, we decided to model the platelet
count as a numeric outcome along with the logarithm of serum bilirubin. We have
considered only presence of hepatomegaly as a binary outcome and seriousness of
edema as an ordinal outcome. For all four outcomes we decided to use the same
structure of fixed effects:

ηF = β0 + βAA+ βMM + βA:MAM + β1S1 + β2S2 + β3S3, (2.22)

where A is the age at the entry (divided by 10), M is an indicator of male pa-
tient and S1, S2, S3 are B-spline bases for time since the entry (quadratic, single
inner knot in 1.25). The random effects were comprised of solely random inter-
cept, hence, the covariance matrix Σ is 4-dimensional (in order: bili, platelet,
hepato, edema).

34



Table 2.1: PBC910 dataset. Posterior medians of the threshold concept model
parameters including 95% equal-tailed credible intervals.

Parameter Numeric outcomes Binary outcome Ordinal outcome

Log(bilirubin) Platelet count Hepatomegaly Edema

β0 0.92 (0.37; 1.46) 278.56 (225.64; 331.49) −0.09 (−1.37;1.23) −4.30 (−6.04;−2.75)
βA −0.12 (−0.23;−0.01) −0.98 (−11.52; 9.57) −0.04 (−0.31;0.22) 0.44 (0.14; 0.75)
βM −0.08 (−1.46; 1.28) 90.01 (−61.69; 238.41) −2.01 (−5.41;1.41) −1.78 (−6.07; 2.20)
βA:M 0.12 (−0.13; 0.37) −22.19 (−49.64; 5.71) 0.54 (−0.11;1.19) 0.19 (−0.54; 0.91)
β1 −0.16 (−0.28;−0.05) −32.55 (−48.01;−17.14) −0.07 (−0.57;0.44) −0.22 (−0.83; 0.38)
β2 0.30 (0.13; 0.47) −12.33 (−35.78; 10.80) 0.36 (−0.42;1.14) 1.00 (0.06; 1.96)
β3 0.06 (−0.17; 0.28) −43.91 (−74.06;−13.55) 0.15 (−0.89;1.17) 0.70 (−0.51; 1.91)

σ = τ− 1
2 0.38 (0.36; 0.40) 51.08 (48.41; 54.00) 1 1

γ1 - - - 2.21 (1.84; 2.61)

Table 2.1 provides quantile estimates of the posterior distribution of unknown
parameters specific to each modelled outcome. The resulting spline parametriza-
tions are depicted in Figure 2.3a for numeric outcomes only. We can see slightly
increasing trend for serum bilirubin and decreasing trend for platelet count. When
the matrix Σ is decomposed into elements of standard deviations and correlations,
their posterior medians take the following values

diag

⎛⎜⎜⎜⎜⎜⎝
0.89
81.37
1.85
1.90

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
1.00 −0.16 0.55 0.35
−0.16 1.00 −0.26 −0.21
0.55 −0.26 1.00 0.39
0.35 −0.21 0.39 1.00

⎞⎟⎟⎟⎟⎟⎠ diag

⎛⎜⎜⎜⎜⎜⎝
0.89
81.37
1.85
1.90

⎞⎟⎟⎟⎟⎟⎠
which proves non-negligible correlations among the latent random intercepts. No-
tice the negative correlations of platelet count with other outcomes.

2.4.2 The GLMM-based model
Having established the threshold concept model we sought for model allowing for
more types of outcomes. Naturally, we completely switched to GLMM frame-
work (Vávra et al.). Within that paper we established the model for numeric,
binary, ordinal and general categorical outcomes and briefly mentioned the pos-
sibility for count outcomes. Here we will work with all five types of outcomes.
From now on, we will call this model GLMM-based model.

Models from Section 2.2 are united through the joint random effects dis-
tribution. To establish a certain structure that would be kept throughout the
whole thesis we divide the vector of all random effects bi of unit i into subvec-
tors depending on the type of outcomes they belong to. In particular, bN

i ={︂
bri , r ∈ RNum

}︂
, bP

i =
{︂
bri , r ∈ RPoi

}︂
, bB

i =
{︂
bri , r ∈ RBin

}︂
, bO

i =
{︂
bri , r ∈ ROrd

}︂
and bC

i =
{︂
bri , r ∈ RCat

}︂
. We sort these subvectors within bi in the same order

they have been presented above. Moreover, bi is assumed to follow a centred
multivariate normal distribution with a general covariance matrix Σ which will
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also be of block structure:

bi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

bN
i

bP
i

bB
i

bO
i

bC
i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
iid∼ NdR

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0, Σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ΣNN ΣNP ΣNP ΣNO ΣNC

ΣPN ΣPP ΣPB ΣPO ΣPC

ΣBN ΣBP ΣBB ΣBO ΣBC

ΣON ΣOP ΣOB ΣOO ΣOC

ΣCN ΣCP ΣCB ΣCO ΣCC

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.23)

The equation (2.17) with the use of (2.2), (2.7), (2.9), (2.12), (2.14) (pdfs for
individual GLMM types) and (2.21) (random effects distribution) is actually the
most space-efficient way to express the pdf for observations of a single unit i. We
combine them into

p (Yi|β, τ , c,Σ; Ci) ∝
∫︂ ∏︂

r∈RNum

τ
ni
2
r exp

⎧⎨⎩−τr2
ni∑︂
j=1

(︂
yri,j − ηri,j

)︂2
⎫⎬⎭ ·

·
∏︂

r∈RPoi

exp
⎧⎨⎩

ni∑︂
j=1

(︂
yri,jη

r
i,j − exp{ηri,j}

)︂⎫⎬⎭ ·
·
∏︂

r∈RBin

ni∏︂
j=1

[︂
logit−1

(︂
ηri,j
)︂]︂yr

i,j
[︂
1− logit−1

(︂
ηri,j
)︂]︂1−yr

i,j ·

·
∏︂

r∈ROrd

ni∏︂
j=1

[︂
logit−1

(︂
ηri,j − cr,yr

i,j−1
)︂
− logit−1

(︂
ηri,j − cr,yr

i,j

)︂]︂
·

·
∏︂

r∈RCat

ni∏︂
j=1

exp
{︂
ηri,j,yr

i,j

}︂
1 +

Kr−1∑︁
k=1

exp{ηri,j,k}
·

· |Σ|−
1
2 exp

{︃
−1

2b
⊤
i Σ−1bi

}︃
dbi, (2.24)

where β = {βr, r ∈ R}, τ = {τr, r ∈ RNum}, c = {cr, r ∈ ROrd}. Equation (2.24)
captures the complexity of the model we are dealing with. As elegant as the idea
with random effects to jointly model the outcomes seems, it certainly complicates
the evaluation of marginal distribution of the outcomes since the pieces bri are
scattered at different places within the predictors ηri,j. Unless there are only
numeric outcomes, we cannot directly evaluate this integral. Similarly as in
previous threshold model, this does not have to concern us that much since we
aim for the Bayesian approach and the computation of integrals (2.24) will not
be necessary to estimate the model by the MCMC sampling. However, for some
applications (e.g. calculation of classification probabilities) we employ numerical
methods (Laplacian approximation or Adaptive Gaussian Quadrature in general)
for approximation of the integral, see Section 7.3.

PBC910 analysis by the GLMM-based model

Again, we demonstrate the use of the just presented model on the PBC910 dataset.
Estimation is done via our MCMC sampler (Chapter 6) with G = 1 clusters. The
implementation of this sampler is more advanced and allows for missing values
among outcomes, hence, we work here with all 918 data rows.
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Table 2.2: PBC910 dataset. Posterior medians of the GLMM-based model param-
eters including 95% equal-tailed credible intervals.

Parameter Numeric outcome Count outcome Binary outcome Ordinal outcome

Log(bilirubin) Platelet count Hepatomegaly Edema

β0 0.94 (0.35; 1.50) 5.56 (5.35; 5.76) −0.15 (−2.42;2.09) -
βA −0.13 (−0.24;−0.01) 0.00 (−0.05; 0.04) −0.05 (−0.50;0.41) 0.79 (0.28;1.36)
βM −0.28 (−2.07; 1.48) 0.61 (−0.06; 1.24) −4.22 (−11.46;2.79) −2.15 (−4.89;0.08)
βA:M 0.15 (−0.17; 0.48) −0.13 (−0.25;−0.01) 1.05 (−0.25;2.40) 0.71 (−1.02;2.55)
β1 −0.12 (−0.23;−0.01) −0.13 (−0.15;−0.11) −0.22 (−1.12;0.66) −0.37 (−1.42;0.68)
β2 0.21 (0.04; 0.37) −0.05 (−0.08;−0.02) 0.63 (−0.69;2.00) 1.67 (0.13;3.21)
β3 0.22 (0.01; 0.43) −0.18 (−0.21;−0.14) 0.04 (−1.80;1.82) 1.21 (−0.73;3.14)

σ = τ− 1
2 0.38 (0.36; 0.40) - - -

c0 - - - 3.55 (2.78;4.41)
c1 - - - 7.46 (6.35;8.68)

We will use the same outcomes and model structure as for the threshold con-
cept model above. One small difference will be regarding the platelet count which
can now be modelled as a count variable. Hence, we have one outcome per each
type except for the general categorical case, for which there does not exist a suit-
able marker in pbcseq. The fixed effects structure will be again (2.22) with the
exception of an ordinal outcome, where the intercept term β0 is replaced by the
two ordered intercepts −∞ < c0 < c1 <∞.

We provide a table analogous to the previous one summarizing the posterior
distributions by 2.5%, 50%, and 97.5% quantiles, Table 2.2. We note, however,
that parameters for the non-numeric outcomes do not have identical interpreta-
tion as in the threshold concept model, hence, their size comparison is irrelevant
maybe except for a sign (and significance). Results for the logarithm of serum
bilirubin appear analogous. Likewise do even the estimated spline parametriza-
tions depicted in Figure 2.3. Minor differences could be caused, for example, by
those 17 additional observations. The splines for platelet count slightly differ due
to different model behind.

Yet another parameter, interpretation of which differs from the threshold con-
cept model, is the covariance matrix Σ. We still have only random intercepts,
but some of them are included in a different format. Comparing the posterior
medians of standard deviations and correlations

diag

⎛⎜⎜⎜⎜⎜⎝
0.90
0.37
3.10
3.23

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
1.00 −0.17 0.55 0.34
−0.17 1.00 −0.31 −0.27
0.55 −0.31 1.00 0.38
0.34 −0.27 0.38 1.00

⎞⎟⎟⎟⎟⎟⎠ diag

⎛⎜⎜⎜⎜⎜⎝
0.90
0.37
3.10
3.23

⎞⎟⎟⎟⎟⎟⎠
with the ones based on the previous model, we do not see any major differences
in the correlation structure. On the other hand, the standard deviations for the
random intercepts differ substantially.
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(a) The threshold concept model.
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(b) The GLMM-based model.

Figure 2.3: PBC910 dataset. Estimated spline curves for patients of different ages
for males and females separately by posterior median.

38



3. Model-based clustering
Our primary goal is to divide observed units into groups of similar characteristics.
In statistics, this task is often addressed as unsupervised clustering since no infor-
mation about the true partition is available. Traditional methods for multivariate
clustering, e.g. k-means algorithm by Hartigan and Wong (1979) (Algorithm 7),
are unfit for the longitudinal nature of our mixed-type data since definition of
a metric on such a sample space can be troublesome.

We will evade such metric-based methods and take a completely different ap-
proach of the model-based clustering (MBC), methodology introduced by Banfield
and Raftery (1993) for multivariate normal distribution. We will slowly transfer
from this elementary mixture of normal distributions to a general mixture of well
structured probabilistic models.

3.1 Finite mixture of distributions
When the data exhibit some irregularities such as multimodality, which makes
them difficult to be modelled by standard distributional families, one can create
a mixture of distributions to better fit the data. The generating mechanism is
extended by sampling the allocation indicators first (unobserved in reality) and
then sampling the observed data from the distribution of the sampled group.

For simplicity, let us first assume that n independent multivariate outcomes
Yi, i = 1, . . . , n are observed. We will also assume that the heterogeneity within
the data is caused by a hidden allocations of all units to one of G > 1 groups which
differ in the distribution of Yi. The allocation will be denoted by Ui ∈ {1, . . . , G}
meaning Ui = g if and only if unit i falls into group g ∈ {1, . . . , G}.

The marginal distribution of allocation indicators is fully described by param-
eter w which consists of probabilities

wg := P [Ui = g] , g = 1, . . . , G, (3.1)

where 0 < wg < 1 and w1 + · · ·+wG = 1. Then, if we denote by hg the probability
density function of Yi given it is allocated in group g, that is, of distribution
Yi|Ui = g with pdf hg(yi) = p(Yi = yi|Ui = g), the marginal distribution of
Yi can be obtained from a joint distribution of {Yi, Ui} by integration of latent
allocation indicators, which yields us the following pdf:

p (Yi = yi) =
G∑︂
g=1

P(Ui = g)p (Yi = yi|Ui = g) =
G∑︂
g=1

wghg(yi).

One can also use Bayes’ theorem to evaluate the probability of allocation unit i
into group g given observed data:

P [Ui = g|Yi = yi] = wghg(yi)
G∑︁
l=1

wlhl(yi)
∝ wghg(yi), (3.2)

which is used to create the partition into clusters. However, the unknown prob-
abilities w and model parameters ζ(g) of each hg have to be estimated first.
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The estimation by maximisation of likelihood

L(w, ζ(1), . . . , ζ(G)) =
n∏︂
i=1

G∑︂
g=1

wghg(Yi; ζ(g))

cannot be directly performed and has to be solved by numerical methods, e.g.
by EM algorithm (Dempster et al., 1977) which simultaneously estimates the
allocation probabilities. An alternative (Bayesian) approach is to assign some
prior distribution to unknown parameters w and ζ(g), g = 1, . . . , G and then
evaluate the posterior distribution of these unknown parameters, for more details
see Chapter 4.

Let us demonstrate the mixture distribution on the well known faithful
dataset which gathers the duration and waiting times for eruption of Old Faithful
geyser in Yellowstone National Park, Wyoming, USA. Looking at Figure 3.1, the
distribution appears to be bimodal (short eruption times precede short waiting
times and, conversely, long eruptions times precede long waiting times). Hence,
we estimated the univariate (separately for eruption and waiting time) and multi-
variate normal mixture model with G = 2 clusters and estimated the classification
probabilities (3.2) as a parametric function of estimated parameters.

3.2 Model-based clustering
It did not take long time (Fraley and Raftery, 2002) to realize that the finite mix-
ture can be used even for much more complex models. One can extend this idea
to any independent blocks of data Yi, i = 1, . . . , n that follow a distribution given
by the pdf hg of a more complex form when allocated in group g ∈ {1, . . . , G}.
These principles are collectively referred to as model-based clustering (MBC) since
they can be used in wide variety of statistical models.
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Figure 3.1: Old Faithful geyser data. Univariate (left, right) and bivariate kernel
density estimates (centre). Colour depicts the probability of being allocated to
one of the clusters given a data point estimated by the EM-algorithm.
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Complex probabilistic models often require auxiliary variables which are not
directly observed. These latent quantities will be denoted by Li since they could
be specific to each unit, e.g. the random effects bi from Section 2.4. For their
special role, we keep Ui separate from Li in the equations within this chapter,
however, in later sections we consider Ui as yet another element of Li or L =
{Li, i = 1, . . . , n} in general.

Let the joint distribution of observed and unobserved data {Yi,Li} given allo-
cation in group g depend on a set of parameters ζ(g) which can consist of several
blocks of parameters (see the following section for an example). The number of
these parameters could be very large and some of them would not have to be
specific to each group at all. Therefore, we introduce an additional parameter ζ
which will stand for parameters common to all clusters, while ζ(g) refers to group-
specific parameters only. Altogether, we denote by θ =

{︂
w, ζ, ζ(1), . . . , ζ(G)

}︂
the

set of all unknown parameters. Additionally, the distribution of {Yi,Li} given
observed covariates Ci is of interest.

The pdf for {Yi,Li, Ui} given covariates and values of unknown parameters
can be decomposed into

p (Yi,Li, Ui |θ; Ci) = p (Yi |Ui,Li,θ; Ci) p (Li |Ui,θ; Ci) p (Ui |θ) ,

from which the latent (unobserved) data have to be integrated out to obtain
marginal distribution of Yi given covariates and θ:

p (Yi |θ; Ci) =
G∑︂
g=1

P [Ui = g|w]
∫︂
p
(︂
Yi,Li

⃓⃓⃓
Ui = g, ζ, ζ(g); Ci

)︂
dLi, (3.3)

where dLi denotes integration of all unobserved elements included in Li with
respect to the corresponding measure. The integral in (3.3) is often intractable,
which complicates the observed likelihood even more than the simple finite mix-
ture does. The EM-algorithm for finding the MLE then has to be adjusted to deal
with both allocation indicators Ui and other latent quantities Li. Bouveyron et al.
(2019) provide several more complex examples of the use of EM-algorithm ac-
companied with diverse real data applications. However, we will take a Bayesian
approach for model estimation since it naturally works with hierarchically well
structured models, more on that later in Chapter 4.

3.2.1 Classification probabilities and rules
Analogously as in the previous section, we can use Bayes’ theorem to obtain the
classification probabilities given observed data and a chosen value of unknown
parameters θ:

ui,g(θ) := P [Ui = g|Yi,θ; Ci] ∝ wg

∫︂
p (Yi,Li|Ui = g,θ; Ci) dLi. (3.4)

Note that one can calculate the classification probabilities even for a newly ob-
served (or artificial) unit with the use of its set of outcomes Ynew and covari-
ates Cnew.

To obtain the probabilities (3.4), expressions for all g = 1, . . . , G have to be
evaluated and then summed up to obtain the denominator. The computation for
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one unit and a value of θ requires G evaluations of the integral with respect to
latent data, which can become a bottle neck for the computation time, especially,
when the integral has to be numerically approximated. We have dedicated several
sections in Chapter 7 to explain the use of a variety of methods for integral
approximations in detail.

For now, assume that we have already obtained a point estimate ˆ︁ui,g of (3.4),
e.g. by evaluation of (3.4) at a point estimate ˆ︁θ of θ or by a certain characteristic
of the posterior distribution. The most straightforward classification of a unit i is
to the cluster with the highest probability ˆ︁Ui := arg max

g∈{1,...,G}
ˆ︁ui,g. However, that may

not be the best strategy for classification since there could be other competing
cluster(s). Such units should rather remain unclassified ( ˆ︁Ui = 0) by a given fixed
rule. Below, we list the possible rules for classifying into ˆ︁Ui:
(P1) the highest probability ˆ︁u

i,ˆ︁Ui
is higher than a given limit (such as 0.5 or 0.6),

(P2) the highest probability ˆ︁u
i,ˆ︁Ui

is higher by a given margin (such as 0.2) than
other classification probabilities.

If the chosen rule is not met, the unit is marked as unclassified ( ˆ︁Ui := 0). Both
rules (and many other) have their strengths and weaknesses, so one should choose
carefully according to his idea of being unclassifiable.

Given interval estimates Ig = (lg, ug) of the classification probabilities, e.g.
ET or HPD intervals based on posterior distribution (see Section 4.1), we can
construct even more elaborate rules for staying with ˆ︁Ui := arg max

g∈{1,...,G}
ˆ︁ui,g:

(I1) the lower bound lˆ︁Ui
is higher than a given threshold (such as 0.5 or 0.6),

(I2) the interval Iˆ︁Ui
does not cross the other intervals, i.e. the lower bound lˆ︁Ui

is higher than any other upper bound ug, g ∈ {1, . . . , G} \ { ˆ︁Ui}.
3.2.2 The number of mixture components
In the example with Old Faithful geyser at the end of Section 3.1 it was quite
obvious from the distribution of the points in the scatterplot (see Figure 3.1)
that we should choose G = 2 components. But what if the suitable number of
mixture components G cannot be judged (due to data complexity) and no expert
knowledge is available?

A very common solution to this problem is to simply estimate the model
under different choices of G ∈ {1, 2, . . . , Gmax}. One then can suitably plot the
resulting partition and choose the value of G leading to the visually most pleasing
result. Yet, it may be difficult to judge, especially, in more complicated data
structures. A more scientific approach would be to compare the fits numerically.
One can compare the resulting likelihoods and whether the increase in number
of unknown parameters was worth it. Akaike information criterion (AIC) and
Bayesian information criterion (BIC) are favourite choices which penalize the
maximal value of (log)-likelihood by the number of unknown parameters, the
latter more than the former. Then one chooses the G optimizing the selected
criterium across the Gmax possible values.
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For example, for the Old Faithful geyser data BIC confirms theG = 2 solution,
while AIC prefers G = 5 groups. Three of the groups lie in the bottom left corner
of low waiting and eruption times, the other two lie in the opposite corner. Hence,
one could still interpret it as two main groups, but each requires small subdivisions
to approximate the underlying distribution appropriately.

In the Bayesian setting, however, we estimate the whole posterior distribution
of unknown parameters θ instead of obtaining a point estimator ˆ︁θ maximising
the likelihood. Nevertheless, the (log)-likelihood of the model can be viewed as
a parametric function of θ and a posterior distribution of the chosen criterion
can be evaluated, see Section 4.3 for the use of deviance. However, the Bayesian
approach offers plenty of other methods for estimating the number of components.
For example, we will set up the prior distribution to achieve sparse finite mixture,
see Sections 4.2 and 6.3.

3.3 MBC for jointly modelled longitudinal out-
comes of a mixed type

The challenge of modelling longitudinal data was first faced by Verbeke and
Lesaffre (1996), who classified growth curves, though not explicitly called it MBC
at that time. More recently, an application of similar ideas to clustering of gene-
expression data is covered by Celeux et al. (2005). Subsequently, De la Cruz-Meśıa
et al. (2008) base their MBC procedure for longitudinal data on a non-linear mixed
model. The situation of more than one continuous outcome (|R| = |RNum| > 1)
available for clustering is considered by Villarroel et al. (2009). An early example
with the use of MBC for non-continuous longitudinal data modelled by GLMM
can be found in Molenberghs and Verbeke (2005, Chapter 14, Section 23.3.),
but still for a single (|R| = 1) longitudinal outcome. Proust-Lima et al. (2017)
provide an package lcmm for modelling several longitudinal outcomes of the
same type (e.g. all binary).

The case of combining different types of longitudinal outcomes for the pur-
pose of clustering is far more challenging and, thus, scarce in the literature. Grün
and Leisch (2008) implemented a clustering algorithm ( package flexmix) for
longitudinal data of a mixed type, however, under independence of different lon-
gitudinal outcomes measured at one occasion. This may not only be unrealistic
but also prevents the analyst from exploiting information provided by the depen-
dence structure among the outcomes in the clustering procedure. Our approach
is heavily influenced by the work of Komárek and Komárková (2013, 2014) who
were able to cluster longitudinal data of numeric, count and binary type and
used random effects to capture the relationships among them in their pack-
age mixAK. However, they lack ordinal and general categorical outcomes for the
modelling of EU-SILC data where these types are common.

In the rest of this section we show how exactly the MBC methodology was
used for the models introduced in Sections 2.4.1 and 2.4.2. Bayesian approach
will be taken in order to estimate these two models. After the prior distributions
are set in Chapter 4, the samplers are introduced in the two following Chapters 5
and 6 separately for both models. We continue in the example of the PBC910
dataset to illustrate their setting on a real data problem.
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3.3.1 MBC for the threshold concept model
Within the threshold concept model (see Section 2.4.1), there are several unknown
parameters which can be potentially set up to be group-specific. Here, we will
work under group-specificity of all parameters with the exception of γ = {γr, r ∈
ROrd} which will be common to all clusters since the later derivation of the full-
conditional distribution (see Section 5.1.4) would be problematic. Nevertheless,
we fix some of the parameters in real-data applications. We will use the following
notation: β(g), τ (g), Σ(g) for parameters specific to cluster g ∈ {1, . . . , G}. When
working under MBC set up, the symbols β, τ , Σ stand for collections of the group-
specific parameters, that is, β =

{︂
β(g), g = 1, . . . , G

}︂
, τ =

{︂
τ (g), g = 1, . . . , G

}︂
,

Σ =
{︂
Σ(g), g = 1, . . . , G

}︂
, respectively. Altogether, in the notation from the

previous section: ζ = γ, ζ(g) =
{︂
β(g), τ (g),Σ(g)

}︂
and θ = {w,β, τ ,γ,Σ}.

In addition, we work here with two kinds of latent variables: random effects
bi and latent numeric outcomes Y⋆,OB

i , hence, Li =
{︂
bi,Y⋆,OB

i

}︂
. The pdf (3.3) for

Yi under a mixture of the threshold concept models (2.18) can be rewritten to

p (Yi|θ; Ci) =
G∑︂
g=1

wg

∫︂ ∫︂
p
(︂
YOB
i

⃓⃓⃓
Y⋆,OB
i ,γ

)︂
·

· p
(︂
YN
i ,Y

⋆,OB
i

⃓⃓⃓
bi,β

(g), τ (g); Ci
)︂
· p
(︂
bi
⃓⃓⃓
Σ(g)

)︂
dbi dY⋆,OB

i . (3.5)

The probability of allocation to cluster g given the observed data is then by Bayes’
theorem proportional to

ui,g(θ) := P [Ui = g|Yi,θ; Ci] ∝ wg

∫︂ ∫︂
p
(︂
YOB
i

⃓⃓⃓
Y⋆,OB
i ,γ

)︂
·

· p
(︂
YN
i ,Y

⋆,OB
i

⃓⃓⃓
bi,β

(g), τ (g); Ci
)︂
· p
(︂
bi
⃓⃓⃓
Σ(g)

)︂
dbi dY⋆,OB

i . (3.6)

Direct evaluation for a specific value of θ requires to approximate the double
integral (G times), see Section 7.2.

PBC910 clustering by the threshold concept model

We continue in the example in Section 2.4.1 by supposing G = 2 latent groups.
These groups are assumed to differ in β and τ parameters; the predictor remains
of the same structure (2.22). The relationships among outcomes will be still
described by the matrix Σ common to all patients.

Speaking of the matrix Σ, once we decompose it into standard deviations and
correlations the posterior median estimates of the respective elements resemble
the previous estimates:

diag

⎛⎜⎜⎜⎜⎜⎝
0.75
75.50
1.88
2.05

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
1.00 −0.43 0.56 0.41
−0.43 1.00 −0.36 −0.23
0.56 −0.36 1.00 0.40
0.41 −0.23 0.40 1.00

⎞⎟⎟⎟⎟⎟⎠ diag

⎛⎜⎜⎜⎜⎜⎝
0.75
75.50
1.88
2.05

⎞⎟⎟⎟⎟⎟⎠ ,

although the standard deviations for random effects have decreased. This sug-
gests that some heterogeneity previously captured by the random effects is now
captured by the division into the two groups.
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Table 3.1: PBC910 dataset, G = 2. Posterior medians of the threshold concept
model parameters including 95% equal-tailed credible intervals.

Parameter g Numeric outcomes Binary outcome Ordinal outcome

Log(bilirubin) Platelet count Hepatomegaly Edema

β0
1 1.61 (0.77; 2.45) 297.59 (211.01; 389.29) −0.89 (−2.98;1.17) −4.77 (−7.66;−2.31)
2 0.33 (−0.32; 0.88) 231.50 (166.86; 292.97) 0.47 (−1.33;2.41) −3.73 (−5.99;−1.71)

βA
1 −0.16 (−0.33; 0.01) 2.35 (−16.36; 20.15) 0.21 (−0.22;0.63) 0.42 (−0.07; 0.96)
2 −0.07 (−0.18; 0.07) 3.65 (−8.46; 16.32) −0.21 (−0.60;0.16) 0.37 (−0.02; 0.79)

βM
1 −0.60 (−2.32; 1.17) 32.51 (−181.38; 244.62) −1.52 (−5.80;2.66) −1.14 (−6.64; 4.35)
2 −0.35 (−1.70; 0.98) 18.01 (−133.28; 168.41) −0.54 (−5.26;4.43) −0.96 (−5.93; 4.13)

βA:M
1 0.21 (−0.14; 0.55) −9.21 (−50.41; 33.64) 0.35 (−0.51;1.24) −0.15 (−1.26; 0.87)
2 0.14 (−0.09; 0.38) −13.37 (−39.98; 13.72) 0.38 (−0.48;1.22) 0.14 (−0.73; 0.99)

β1
1 −0.19 (−0.43; 0.06) −48.90 (−83.42;−15.79) 0.13 (−0.80;1.00) 0.49 (−0.55; 1.59)
2 −0.13 (−0.24;−0.02) −19.45 (−33.95; −5.89) −0.19 (−0.94;0.56) −0.60 (−1.39; 0.20)

β2
1 0.54 (0.16; 0.91) 8.62 (−42.34; 62.85) 0.52 (−0.68;1.69) 1.90 (0.38; 3.41)
2 0.10 (−0.07; 0.28) −30.34 (−50.62; −9.63) 0.26 (−0.84;1.30) 0.55 (−0.73; 1.79)

β3
1 −0.04 (−0.53; 0.46) −49.28 (−115.96; 20.17) 0.11 (−1.49;1.78) 1.62 (−0.29; 3.52)
2 0.13 (−0.08; 0.35) −37.22 (−63.61;−10.71) 0.19 (−1.27;1.63) 0.15 (−1.55; 1.78)

σ = τ− 1
2

1 0.51 (0.46; 0.57) 70.63 (64.49; 78.55) 1 1
2 0.26 (0.24; 0.28) 30.40 (26.66; 35.21) 1 1

γ1 - - - 2.30 (1.95; 2.72)

The difference among the groups is captured by quantile estimates of the
posterior distribution of the cluster-specific parameters in Table 3.1. Notably,
the first obvious difference lies in the variability of the error terms described by
σ parameters. The difference in the effects of the covariates is also captured
in Figure 3.2. According to this model, patients in the first cluster (red) reach
high values of numeric outcomes and have higher proportion of the hepatomegaly
cases, while patients from the second cluster (turquoise) attain much lower values.
We again witness that the effect of age changes with the gender of the patient.

To cluster the patients we used the sampled allocation indicators Ui to es-
timate the posterior probability of allocation by relative frequencies. We have
applied clustering rule (P1), where the highest probability had to overcome the
threshold of 0.6 to be convincingly clustered to the corresponding cluster. By
this rule we have divided the patients to the red group of 94 patients (36.15%, 13
males, 81 females) and the turquoise cluster of 152 patients (58.46%, 14 males,
138 females); the rest 14 (5.38%) females remained unclassified.

For the analysis, only the data from the first 910 days have been used to
imitate the situation of knowing only limited amount of data to create a prog-
nosis. However, the original data contain information beyond the 910 days. We
have taken the last observation of each patient and evaluated the survival distri-
bution after the day 910. The resulted Kaplan-Meier estimates are depicted in
Figure 3.4a, where we can clearly see that the red cluster (of high bilirubin and
platelet count) appears to have much worse prognosis with regards to the sur-
vival. Hence, we could use this model to sort patients according to the available
data into one of these two groups: one safe with better prospects for survival in
the future, while the patients sorted into the other cluster should be considered
as people with much higher risk of death.
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3.3.2 MBC for the GLMM-based model
Similarly to the threshold concept model we consider all unknown parameters β,
τ , c and Σ of the GLMM-based model (Section 2.4.2) to be cluster-specific and
we use the same notation β(g), τ (g), c(g) and Σ(g) to denote the values specific to
cluster g ∈ {1, . . . , G}. Yet, we still have the freedom to choose which parameters
would stay common to all clusters. The implementation for this model is more
advanced and allows even for selecting specific elements of the fixed effects β
as group-specific (see Section 7.1). Here, only the case of all fixed effects being
group-specific is considered. Symbols β, τ , c and Σ from now on unite all
the incarnations of the respective parameters, i.e. β =

{︂
β(g), g = 1, . . . , G

}︂
,

τ =
{︂
τ (g), g = 1, . . . , G

}︂
, c =

{︂
c(g), g = 1, . . . , G

}︂
, Σ =

{︂
Σ(g), g = 1, . . . , G

}︂
,

respectively. Altogether, in the notation from the previous section: ζ = ∅, ζ(g) ={︂
β(g), τ (g), c(g),Σ(g)

}︂
and θ = {w,β, τ , c,Σ}.

Except for the allocation indicators Ui, the only latent variables are the ran-
dom effects Li = bi. The pdf (3.3) for Yi under a mixture of the GLMM-based
models (2.24) can be rewritten to

p (Yi|θ; Ci) =
G∑︂
g=1

wg

∫︂ ∏︂
r∈R

ni∏︂
j=1

pt(r)
(︂
Y r
i,j

⃓⃓⃓
bri ,β

(g)
r , τ (g)

r , c(g)
r ; Ci,j

)︂
·p
(︂
bi
⃓⃓⃓
Σ(g)

)︂
dbi.

(3.7)

The probability of allocation to cluster g given the observed data is then by Bayes’
theorem proportional to

ui,g(θ) := P [Ui = g|Yi,θ; Ci] ∝

wg

∫︂ ∏︂
r∈R

ni∏︂
j=1

pt(r)
(︂
Y r
i,j

⃓⃓⃓
bri ,β

(g)
r , τ (g)

r , c(g)
r ; Ci,j

)︂
· p
(︂
bi
⃓⃓⃓
Σ(g)

)︂
dbi. (3.8)

Direct evaluation for a specific value of θ requires to approximate the integral
with respect to the random effects bi (G times), see Section 7.3.

PBC910 clustering by the GLMM-based model

The analysis is analogous to the one with the threshold concept model, but a Pois-
son log-linear mixed model is assumed for the platelet count. We suppose G = 2
latent groups, each of which follows a model described in Section 2.4.2. The
groups differ in the fixed effects β, precision parameter τ for the bilirubin out-
come and the ordered intercepts c for seriousness of edema. The variance matrix
Σ describing the associations among random intercepts is kept common to all
clusters and was estimated (by posterior median) to be decomposed into

diag

⎛⎜⎜⎜⎜⎜⎝
0.88
0.35
3.19
3.18

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
1.00 −0.13 0.54 0.33
−0.13 1.00 −0.28 −0.23
0.54 −0.28 1.00 0.35
0.33 −0.23 0.35 1.00

⎞⎟⎟⎟⎟⎟⎠ diag

⎛⎜⎜⎜⎜⎜⎝
0.88
0.35
3.19
3.18

⎞⎟⎟⎟⎟⎟⎠
which resembles the results from Section 2.4.2.
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Table 3.2: PBC910 dataset, G = 2. Posterior medians of the GLMM-based model
parameters including 95% equal-tailed credible intervals.

Parameter g Numeric outcome Count outcome Binary outcome Ordinal outcome

Log(bilirubin) Platelet count Hepatomegaly Edema

β0
1 1.42 (0.49;2.42) 5.63 (5.30; 6.13) 2.37 (−1.38; 6.29) -
2 0.65 (−0.13;1.40) 5.49 (5.18; 5.78) −1.49 (−4.89; 1.53) -

βA
1 −0.17 (−0.37;0.02) −0.01 (−0.11; 0.04) −0.46 (−1.26; 0.30) 0.64 (−0.19; 1.63)
2 −0.10 (−0.25;0.04) 0.01 (−0.05; 0.07) 0.14 (−0.46; 0.82) 0.80 (0.10; 1.61)

βM
1 −1.27 (−4.57;2.04) −0.11 (−1.39; 1.18) −1.45 (−14.83;11.42) −1.13 (−5.20; 2.57)
2 0.48 (−2.19;3.60) 0.46 (−0.74; 1.90) 0.10 (−11.66;12.66) −3.79 (−8.35;−0.42)

βA:M
1 0.28 (−0.28;0.82) −0.01 (−0.22; 0.19) 0.73 (−1.38; 2.96) 0.21 (−2.17; 2.70)
2 0.03 (−0.65;0.60) −0.11 (−0.42; 0.16) 0.07 (−2.75; 2.71) 0.13 (−4.95; 8.67)

β1
1 −0.09 (−0.27;0.08) −0.32 (−0.36;−0.29) 0.43 (−1.18; 1.98) −0.57 (−2.06; 0.91)
2 −0.13 (−0.28;0.02) 0.00 (−0.03; 0.02) −0.49 (−1.70; 0.70) −0.67 (−2.27; 0.88)

β2
1 0.00 (−0.27;0.27) −0.28 (−0.33;−0.22) −0.90 (−3.41; 1.65) 1.31 (−0.82; 3.36)
2 0.35 (0.13;0.58) 0.12 (0.08; 0.16) 1.30 (−0.49; 3.07) 2.18 (−0.11; 4.59)

β3
1 0.44 (0.11;0.77) −0.65 (−0.73;−0.58) 3.02 (−0.50; 6.64) 1.97 (−0.44; 4.42)
2 0.07 (−0.21;0.35) 0.07 (0.02; 0.11) −1.22 (−3.64; 1.00) −0.55 (−3.94; 2.42)

σ = τ− 1
2

1 0.38 (0.35;0.42) - - -
2 0.37 (0.35;0.40) - - -

c0
1 - - - 3.02 (2.02; 4.09)
2 - - - 3.42 (2.39; 4.72)

c1
1 - - - 6.62 (5.31; 8.09)
2 - - - 7.56 (6.14; 9.46)

Table 3.2 contains quantile descriptions of the posterior distribution of group-
specific model parameters. Many of these parameters appear to be similar in both
discovered clusters, which could be adjusted by a detailed model specification.
However, the most crucial parameter to distinguish the clusters are the spline
coefficients for the platelet count. Looking at Figure 3.3, we immediately see that
the platelet count of patients within the red cluster steeply decreases in time,
while it is slowly increasing within the other turquoise cluster. Moreover, men
have rather negative effect of age on the platelet count. The difference in the
effect of age between genders is a lot more striking in the case of bilirubin, which
agrees with both the exploratory analysis (Figure 1.2) and the threshold concept
clustering (Figure 3.2).

Similarly as before, we applied the (P1) rule for classification of patients into
clusters leaving one man and 6 women unclassified. Comparing the survival
curves in Figure 3.4, we see that the new red cluster (41.15%, 14 males and
93 females) and the turquoise cluster (56.15%, 12 males and 134 females) play
the very analogous role as in the threshold concept model. Yet, the clusters are
more balanced and the difference in survival is not that noticeable. This is,
perhaps, due to higher focus placed on the evolution of platelet count in time.
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Figure 3.2: PBC910 dataset. Threshold concept model, G = 2. Estimated group-
specific (red (g = 1) and turquoise (g = 2)) spline curves for patients of different
ages for males and females separately by posterior median. Proportions of cate-
gorical outcomes with respect to time separately in each cluster.
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Figure 3.3: PBC910 dataset. GLMM-based model, G = 2. Estimated group-
specific (red (g = 1) and turquoise (g = 2)) spline curves for patients of different
ages for males and females separately by posterior median. Proportions of cate-
gorical outcomes with respect to time separately in each cluster.
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(b) The GLMM-based model.

Figure 3.4: PBC910 dataset. Kaplan-Meier survival function estimates after the
day 910 of n = 260 patients clustered into the G = 2 discovered groups (red
(g = 1) and turquoise (g = 2)).
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4. Bayesian setting and MCMC
In previous chapters we introduced two classes of models for clustering and mod-
elling longitudinal mixed-type data. However, so far we avoided the process of
estimating these mixture models. Let us first discuss the possibilities.

Since our data is comprised of n independent blocks (units) following the same
model, we can easily form the observed log-likelihood for the set of unknown
parameters θ:

ℓ (θ|Y; C) =
n∑︂
i=1

ℓ(Yi|θ; Ci), (4.1)

where ℓ(Yi|θ; Ci) is log-transformed (3.5) or (3.7) for the threshold concept model
or the GLMM-based model, respectively. Nevertheless, since the model is built
up on unobserved latent variables (allocation indicators, random effects, latent
numeric outcomes), the log-likelihood (4.1) sums up integrals over the latent
instances. One could approximate the individual integrals using methods from
Chapter 7 and combine them together, which would, however, require sensitivity
analysis to guarantee the desired precision. Not to mention that evaluation of
the integral is only the first step; an efficient methodology for the subsequent
optimisation would have to be proposed, designed and tested.

EM-algorithm (Dempster et al., 1977) is designed to overcome this issue by
working with the complete likelihood which does not contain integrals over the
latent data since they are treated as observed. Yet, the derivation of the algorithm
still requires to perform some integration within the E-step. Bruckers et al.
(2016) estimate their clustering procedure for multivariate longitudinal data via
EM-algorithm, however, for normally distributed outcomes only. The mixed-
type data present a much more difficult challenge, hence, we will rather face the
problem of estimation by the Bayesian approach accompanied by MCMC instead.

Bayesian approach allows us to fully exploit hierarchical structures of our mod-
els. Regardless of the model complexity, these methods elegantly avoid necessary
integrations in a unified way. Moreover, carefully chosen prior distribution of the
unknown parameters regularizes the likelihood to elegantly avoid maximisation
difficulties caused by unit-specific effects. The clustering itself is then based on
the posterior distribution of the individual group probabilities (3.6) or (3.8) and
not only on a single point estimate. The Bayesian approach to MBC has been suc-
cessfully used by Frühwirth-Schnatter (2011) and later by Frühwirth-Schnatter
et al. (2012, 2018) to cluster discrete panel data and by Komárek and Komárková
(2013) to cluster longitudinal biomedical markers from PBC910 of a different type.

4.1 Bayesian principles and inference
We digress a bit to provide the reader with the basic principles of the Bayesian
approach and to set the necessary terminology.

From now on, we treat any unknown element of our statistical model as ran-
dom. It is assumed to follow a certain prior distribution, for example, the pdf
for unknown parameters θ is denoted by p(θ). It expresses analyst’s prior beliefs
about the value of the element before the data are gathered and known. Once
the data are observed we may update our prior belief into the posterior. Strictly
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speaking, the posterior distribution is conditional distribution of θ given the ob-
served data. By Bayes’ theorem we know that the posterior pdf is proportional
to the product of the model contribution with the prior belief:

p(θ |Y; C) ∝ p(Y |θ; C)⏞ ⏟⏟ ⏞
likelihood

· p(θ)⏞ ⏟⏟ ⏞
prior

, (4.2)

where the model is specified only for data Y given covariates C, for which no
model is assumed.

The prior distribution could be based on some historical expert knowledge or
left completely vague. In the latter case, all values are equally plausible (p(θ) ∝
1) and the model specification in the form of likelihood is the only source of
information about the unknown parameter. This is why such a prior is called
non-informative.

On the other hand, an informative prior prefers some values over the other.
The key issue here is to express how precisely are we certain about our prior belief.
This can be expressed by appropriate setting of the hyperparameters of the prior
distribution. This is also where the critique of Bayesian principles stems from
since one can (even unintentionally) overshadow the information provided by the
gathered data and shape the result to any desired value. To avoid such abuse of
Bayesian methods we prefer priors very close to the non-informative prior (flat
prior of low precision) but still informative enough to regularize potential issues
of the model contribution.

The inference about unknown parameters then comes from the posterior distri-
bution which can be described by any distributional characteristic. For example,
characteristics of location, such as posterior mean, median or mode, are suit-
able replacements for the respective point estimators in the classical frequentist
statistics. The equivalent of 95% confidence region for a parameter is the credible
region – a set of values that covers exactly 95% of the posterior mass. There
are several different construction methods for credible regions. The highest pos-
terior density (HPD) credible region gathers all values for which the posterior
density is higher than a threshold such that the desired coverage is still achieved.
In the case of one dimensional parameter, 0.025 and 0.975 posterior quantiles
declare the bounds of the so called equal-tailed (ET) credible interval. One of
the advantages of the credible intervals in general is that they take into account
any potential skewness or multimodality of the posterior distribution, while the
confidence intervals of the form ”point estimate ± standard error” ignore such
possibility.

4.2 Prior distribution settings
We consider rather standard prior distributions of primary model parameters θ
used in the context of hierarchical models. In particular, we assume that the
prior distribution is decomposed into

p(θ, Q) = p(w)⏞ ⏟⏟ ⏞
(4.11)

p(γ)⏞ ⏟⏟ ⏞
(4.13)

p(β | τ ) p(τ )⏞ ⏟⏟ ⏞
(4.5)

p(Σ|Q) p(Q)⏞ ⏟⏟ ⏞
(4.9),(4.10)

(4.3)
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for the threshold concept model and into

p(θ, e0, Q) = p(w|e0)⏞ ⏟⏟ ⏞
(4.11)

p(e0)⏞ ⏟⏟ ⏞
(4.12)

p(c)⏞ ⏟⏟ ⏞
(4.14),(4.15)

p(β
⃓⃓⃓
τ ) p(τ )⏞ ⏟⏟ ⏞

(4.7)

p(Σ|Q) p(Q)⏞ ⏟⏟ ⏞
(4.9),(4.10)

(4.4)

for the GLMM-based model, where Q and e0 are additional hyperparameters
considered to be random. Both models share similar ideas for the elements of
factorization in (4.3) and (4.4) with some minor differences.

In the following, we discuss the prior specification only under the group-
specificity of all possible parameters. In case some parameters are required to be
common to all groups, the priors are specified in analogous way after appropriate
modifications. Though, the hierarchy has to be respected; a parameter shared
by all clusters cannot be generated by a distribution given by a group-specific
parameter.

Fixed effects β and precisions τ

The regression coefficients for numeric outcomes β(g)
r =

(︂
β

(g)
r,1 , . . . , β

(g)
r,dF

r

)︂
, r ∈

RNum, g = 1, . . . , G, are assumed to be a-priori independent and follow a conju-
gate normal distribution in combination with the precision parameter τ (g)

r , that
is N

(︃
β0,r,j,

(︂
τ (g)
r

)︂−1
drj,j

)︃
where β0,r,j and drj,j are fixed hyperparameters. In the

applications, these hyperparameters are frequently set equal to 0 and 10, respec-
tively, to induce a flat prior. In a vector notation, β(g)

r ∼ NdF
r

(︃
β0,r,

(︂
τ (g)
r

)︂−1
Dr

)︃
,

where β0,r =
(︂
β0,r,1, . . . , β0,r,dF

r

)︂
and Dr = diag

(︂
drj,j, j = 1, . . . , dF

r

)︂
.

The precision parameters τ (g)
r for numeric outcomes are assumed to follow

independent Gamma priors τ (g)
r ∼ Γ(aτ , bτ ) with shape aτ > 0 and rate bτ > 0.

For calculations in the later applications, we often use aτ = bτ = 1.
The regression coefficients for the count, binary and ordinal, i.e. β

(g)
r,j , r ∈

RPoi∪RBin∪ROrd are also assumed to be a-priori independent and follow an anal-
ogous normal distribution N

(︂
β0,r,j, d

r
j,j

)︂
, where, however, no precision parameter

τ is involved. Equivalently, in a similar vector notation, β(g)
r ∼ NdF

r
(β0,r, Dr).

Priors are analogously set for effects of the general categorical outcomes, where we
have to moreover distinguish effects β(g)

r,k for different levels k ∈ {1, . . . , Kr − 1},
i.e. β(g)

r,k ∼ NdF
r
(β0,r, Dr).

Altogether, we have

p(β|τ )p(τ ) =
G∏︂
g=1

∏︂
r∈RNum

[︃
φ
(︃
β(g)
r ; β0,r,

(︂
τ (g)
r

)︂−1
Dr

)︃
p
(︂
τ (g)
r

⃓⃓⃓
aτ , bτ

)︂]︃
·

·
G∏︂
g=1

∏︂
r∈ROB

φ
(︂
β(g)
r ; β0,r, Dr

)︂
(4.5)
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and

ℓ(β|τ ) + ℓ(τ ) = const. +
G∑︂
g=1

∑︂
r∈RNum

(︄
aτ + dF

r

2 − 1
)︄

log
(︂
τ (g)
r

)︂
−

−
G∑︂
g=1

∑︂
r∈RNum

τ (g)
r

[︃
bτ + 1

2
(︂
β(g)
r − β0,r

)︂⊤
D−1
r

(︂
β(g)
r − β0,r

)︂]︃
−

− 1
2

G∑︂
g=1

∑︂
r∈ROB

(︂
β(g)
r − β0,r

)︂⊤
D−1
r

(︂
β(g)
r − β0,r

)︂
(4.6)

for the threshold concept model. Analogously, for the GLMM-based model:

p(β|τ )p(τ ) =
G∏︂
g=1

∏︂
r∈RNum

[︃
φ
(︃
β(g)
r ; β0,r,

(︂
τ (g)
r

)︂−1
Dr

)︃
p
(︂
τ (g)
r

⃓⃓⃓
aτ , bτ

)︂]︃
·

·
G∏︂
g=1

∏︂
r∈RPoi∪RBin∪ROrd

φ
(︂
β(g)
r ; β0,r, Dr

)︂ G∏︂
g=1

∏︂
r∈RCat

Kr−1∏︂
k=1

φ
(︂
β

(g)
r,k ; β0,r, Dr

)︂
(4.7)

and

ℓ(β|τ ) + ℓ(τ ) = const. +
G∑︂
g=1

∑︂
r∈RNum

(︄
aτ + dF

r

2 − 1
)︄

log
(︂
τ (g)
r

)︂
−

−
G∑︂
g=1

∑︂
r∈RNum

τ (g)
r

[︃
bτ + 1

2
(︂
β(g)
r − β0,r

)︂⊤
D−1
r

(︂
β(g)
r − β0,r

)︂]︃
−

− 1
2

G∑︂
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∑︂
r∈RPoi∪RBin∪ROrd

(︂
β(g)
r − β0,r

)︂⊤
D−1
r

(︂
β(g)
r − β0,r

)︂
−

− 1
2

G∑︂
g=1

∑︂
r∈RCat
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k=1

(︂
β

(g)
r,k − β0,r

)︂⊤
D−1
r

(︂
β

(g)
r,k − β0,r

)︂
. (4.8)

Covariance matrix Σ for random effects

The covariance matrices Σ(g) of the random effects bi are general positive-definite
matrices. We impose a Wishart prior on the inverse covariance matrices Σ−(g) :=(︂
Σ(g)

)︂−1
to preserve conjugacy. The parameters of the Wishart prior are the

scale matrix Q and the number of degrees of freedom ν0 ≥ dR. To avoid selecting
a specific value for the scale matrix and aiming at obtaining a weakly informative
prior for the covariance matrices, we also assume a prior for the scale matrix Q
while keeping the number of degrees of freedom ν0 ≥ dR fixed. Again a Wishart
prior is assumed for the inverse scale matrix Q−1. For this prior, fixed values are
selected for the scale matrix and the number of degrees of freedom ν1. In our
applications, we use ν0 = ν1 = dR + 1 and a diagonal matrix for the scale matrix
given by DQ = 100 · IdR .

The corresponding pdfs in terms of the inverse matrices can be expressed as

p
(︂

Σ−(g)
⃓⃓⃓
Q; ν0

)︂
∝
⃓⃓⃓
Σ−(g)

⃓⃓⃓ ν0−dR−1
2

⃓⃓⃓
Q−1

⃓⃓⃓ ν0
2 exp

{︃
−1

2 Tr
[︂
Q−1Σ−(g)

]︂}︃
(4.9)

and
p
(︂
Q−1

⃓⃓⃓
DQ; ν1

)︂
∝
⃓⃓⃓
Q−1

⃓⃓⃓ ν1−dR−1
2 exp

{︃
−1

2 Tr
[︂
D−1

Q Q−1
]︂}︃
. (4.10)
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Cluster allocation probabilities w

The vector of marginal allocation probabilities w lives on a simplex, where 0 <
wg < 1 and w1 + · · · + wG = 1. Hence, Dirichlet distribution DirG (e1, . . . , eG)
is a very popular choice, where eg > 0 represents the number of units within the
cluster g a priori. Traditionally, all clusters are given the same weight 0 < e0 = eg
for all g = 1, . . . , G. This symmetric version of Dirichlet distribution is briefly
denoted by DirG (e0). Hence, assuming w ∼ DirG (e0) yields

p(w) =
Γ
(︄

G∑︁
g=1

eg

)︄
G∏︁
g=1

Γ(eg)

G∏︂
g=1

weg−1
g

eg=e0∝
G∏︂
g=1

we0−1
g . (4.11)

Frühwirth-Schnatter and Malsiner-Walli (2019) point out that the choice of
e0 is essential for controlling the sparsity of mixture components. High value of
e0 leads to balanced weights w with high probability. However, as Figure 4.1
illustrates in case of G = 3 by decreasing e0 the mass begins to concentrate
on the edges and vertices of the equilateral triangle representing the simplex.
In general, when e0 is close to 0, the Dirichlet prior puts a lot of mass on the
boundary regions of the simplex and many of the G weights are small a-priori.
Then, a sample of allocation indicators U1, . . . , Un generated from multinomial
distribution with such extremely unbalanced w may not even contain some of the
G possible values. Hence, in such a case the number of non-empty components

G+ = G−
G∑︂
g=1

1(n(g)=0),

where n(g) = ∑︁n
i=1 1(Ui=g), satisfies G+ ≪ G with high probability. This is the

fundamental idea behind the sparse finite mixture approach (Malsiner-Walli et al.,
2016) for estimating the appropriate number of mixture components.

Let us denote by Gmax the maximal number of components considered. In
case the number of groups G are a-priori known, one would set Gmax = G and

e0 = 4 e0 = 2 e0 = 1 e0 = 0.7

e0 = 0.5 e0 = 0.3 e0 = 0.1 e0 = 0.01

Figure 4.1: Density of a symmetric Dirichlet distribution Dir3 (e0) displayed in
an equilateral triangle under several choices of parameter e0.
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use a rather large value for e0. If G is not known in advance, then a sparse finite
mixture is supposed by setting a small value for e0 to estimate G by G+ < Gmax.
More about the estimation process can be found later in Section 6.3.

To attenuate the influence of a specific choice of e0, we assign a Gamma prior
e0|ae, be ∼ Γ(ae, be) with pdf

p(e0|ae, be) = bae
e

Γ(ae)
eae−1

0 exp{−bee0} (4.12)

and prior expected value E(e0) = ae/be. As recommended by Frühwirth-Schnatter
and Malsiner-Walli (2019), we select the parameters ae and be of the Gamma prior
to have a small mean when aiming at sparsity, i.e. E(e0) = ae/be = 0.01 with
ae = 1. In case the number of components G are assumed known and one aims
at G+ ≈ G, we select the parameters to induce a mean of E(e0) = ae/be = 4 or
directly fix e0 = 4 to avoid sparsity.

Ordered parameters γ and c

Ordinal outcomes r ∈ ROrd require additional parameter for parametrizing the
probabilities. The threshold concept model works with ordered thresholds −∞ =
γr−1 < γr0 < · · · < γrKr−1 = ∞, while the GLMM-based model uses ordered
intercepts −∞ = cr,−1 < cr,0 < cr,1 < · · · < cr,Kr−1 =∞.

Considering the thresholds γr = (γr1, . . . , γKr−2)⊤, r ∈ ROrd, we first address
the identifiability issue. Corresponding parametric space Ωr is limited to a set of
all vectors of ordered values with fixed first threshold γr0 = 0:

Ωr = {γ ∈ RKr−2 : 0 = γr0 < γ1 < · · · < γKr−2}.

An improper uniform distribution on Ωr is assumed for each set of thresholds γr,
r ∈ ROrd. That is,

p(γ) =
∏︂

r∈ROrd

p(γr) ∝
∏︂

r∈ROrd

1Ωr (γr) . (4.13)

Regarding the ordered intercepts c(g)
r the prior is not specified directly but

for transformed quantities. The (Kr − 1)-dimensional ordered intercepts c(g)
r =(︂

c
(g)
r,0 , . . . , c

(g)
r,Kr−2

)︂⊤
are transformed into π(g)

r =
(︂
π

(g)
r,0 , . . . , π

(g)
r,Kr−1

)︂⊤
:

π
(g)
r,k = P

[︂
Y r
i,j = k

⃓⃓⃓
bi = 0, Ui = g, xri,j = 0

]︂
= logit−1

(︂
c

(g)
r,k

)︂
− logit−1

(︂
c

(g)
r,k−1

)︂
,

c
(g)
r,k = log

⎛⎝ π
(g)
r,0 + · · ·+ π

(g)
r,k

π
(g)
r,k+1 + · · · π(g)

r,Kr−1

⎞⎠ .
(4.14)

The prior distribution is then specified for the probabilities π(g)
r adding up to 1

for all outcomes r ∈ ROrd using a product of Dirichlet distributions:

p (π) ∝
G∏︂
g=1

∏︂
r∈ROrd

Kr−1∏︂
k=0

(︂
π

(g)
r,k

)︂αr,k−1
, (4.15)

where the hyperparameters αr,k are fixed. A value of 1 inducing a uniform dis-
tribution on the simplex is used in the later applications.
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4.3 Posterior distribution exploration
First, we have to examine Bayes’ rule (4.2) more carefully. Assumed models are
built upon latent variables L such as random effects bi, group allocations Ui, etc.
Therefore, a more precise version of (4.2) should be

p(θ |Y; C) ∝ p(θ) ·
∫︂
p(Y |θ, L; C) p(L |θ; C) dL,

where the latent data are integrated out to obtain the pure observed likelihood.
As mentioned several times throughout the thesis, this is hardly tractable. Hence,
we exploit the ideas of Bayesian data augmentation (BDA) by Tanner and Wong
(1987) while considering all latent quantities as additional model parameters in-
cluded in the posterior distribution. This includes any potential randomized
hyperparameters (collectively denoted by H) as well, e.g. Q and e0.

Then, Bayes’ rule (4.2) under presence of latent elements L and randomized
hyperparameters H takes the folowing form:

p(θ, L, H |Y; C) ∝ p(Y |θ, L; C) · p(L |θ; C)⏞ ⏟⏟ ⏞
complete likelihood

· p(θ |H) · p(H)⏞ ⏟⏟ ⏞
prior

. (4.16)

Due to complexity of our suggested models, we cannot match the posterior of
Ψ = {θ,L,H} with any commonly used distributional family. Moreover, evalu-
ating the marginals of each random element ψ ∈ Ψ would be painful. Luckily,
Markov chain Monte Carlo (MCMC) methods elegantly evade any problems with
integration and provide a direct access to the marginals.

MCMC

MCMC methods will be mentioned here only briefly, more details are provided
by Brooks et al. (2011), Robert and Casella (2004) or Hastings (1970).

Given a random sample {Ψm = {θm,Lm,Hm},m = 1, . . . ,M} of size M from
the target distribution, we could estimate any of its characteristics with a rea-
sonable precision. This is the way of Monte Carlo. For example, any univariate
parametric function t(Ψ) satisfying E

[︂
|t(Ψ)|

⃓⃓⃓
Y; C

]︂
< ∞ can be estimated by

averaging the values t (Ψm) ,m = 1, . . . ,M , by the strong law of large numbers
(SLLN). However, how to obtain a random sample from the posterior distribu-
tion?

This is where the first ’MC’ from MCMC (Markov chain) shines. We will
generate a homogeneous Markov chain with the states {ψm} and the following
properties:

1. its stationary distribution is the posterior distribution Ψ|Y; C and

2. there exists a limiting distribution.

From certain B > 0 large enough, the generated states {ΨB+m,m = 1, . . . ,M}
can be considered as representatives of the limiting distribution. Knowing that
the limiting distribution of a homogeneous Markov chain coincides with the sta-
tionary one, these states could be considered ’a sample’ from the posterior distri-
bution.
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The problem of (often highly) autocorrelated states violates the assumption of
independence in the SLLN. Even though the autocorrelations can be substantially
reduced by thinning (keeping only every, say, tenth state), usually some form
of dependence remains. Fortunately, the ergodic theorem (Robert and Casella,
2004, Theorem 6.63) still enables us to estimate the posterior mean of t(Ψ) by
the average of values t (Ψm) ,m = 1, . . . ,M provided the Markov chains is well
behaved. The necessary properties are not difficult to secure (Brooks et al., 2011,
Section 2.5.4).

One algorithm generating a Markov chain of such properties is the Gibbs
sampler by Geman and Geman (1984). The states are divided into blocks ψ, in
our case ψ ∈ {w,β(g)

r , τ (g)
r ,γr, c(g)

r ,Σ(g), Ui, bi,Y⋆,OB
i ,Q, e0} of appropriate indices

r, i and g. Then each block ψ is sampled from the full-conditional distribution
ψ |Ψ−ψ,Y; C , where we condition on the observed data and the last known values
of the rest of the parameters Ψ−ψ = Ψ \ {ψ}. These distributions are easy to
work with since we condition even by the latent quantities instead of integrating
them. The full-conditional distribution will be briefly denoted by ψ| · · · . Every
block ψ ∈ Ψ, one by one, is resampled until a whole new Ψm is obtained and is
later used to generate the next Ψm+1.

However, it is required that each full-conditional distribution ψ| · · · belongs
to a well known distributional family or at least an efficient sampler for this
distribution exists. We have managed to fulfil this requirement with the threshold
concept model. However, within the GLMM-based model the full-conditional
distribution of several parameters is hardly tractable. Hence, we replace the
problematic steps with a Metropolis proposal step. The idea is to propose a new
value of ψ from the proposal distribution (multivariate normal) and then with
according probability accept the proposal value as a new state, otherwise deny
it and remain in the current state. Details on how the appropriate proposal
distributions are designed and the calculation of the acceptance probabilities are
covered in detail later in Section 7.4.

Label switching problem

Redner and Walker (1984) point out the label switching problem which often
arises with mixture models. Especially, when the cluster labels are not a priori
assigned by a given rule. It comes from the fact that the likelihood as well as
the prior and thus the posterior are invariant towards the permutation of cluster
labels. During the sampling procedure it may happen that the meaning of the
labels g = 1, . . . , G is switched. Then, cluster-specific parameters may appear to
have multi-modal posterior because they consist of modes corresponding to the
switched labels.

One can detect such issues by visualization of the traceplots of every pa-
rameter, where sudden shifts are symptoms of label switching. With hundreds
of parameters this task may be tiresome for human. To automatize the detec-
tion, Stephens (2000) proposed a post-sampling procedure which considers all
G! permutations of labels for each iteration and ensures that the latent clusters
1, . . . , G have a fixed meaning during the whole sampling procedure. Only after
label switching has been addressed one should proceed with inference sensitive
to the change of cluster labels such as the estimation of classification probabili-
ties. When sparse finite mixtures are induced, we use more elaborate procedure
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(Algorithm 3) designed for such a case by Frühwirth-Schnatter and Malsiner-
Walli (2019), which is based on k-means clustering (Hartigan and Wong, 1979)
(Algorithm 7). See Section 6.3 for more details.

From applications, it seems that the complexity of our models prevents such
problems completely since we have not encountered any. However, to properly
judge the convergence to the stationary distribution we sample several chains each
started from a different randomly assigned initial values. All chains usually come
to the same results, even though some cluster labels have different meanings across
chains, see Figure 4.2 for an example. Clearly, chains 2 and 4 share the same
cluster interpretation, while chains 1 and 3 have different meaning of g = 1, 2, 3.
Nevertheless, it is obvious that there exist a permutation yielding the same results.
If one aims to use all sampled chains for inference, then the labels have to be
unified by appropriate permutation of all cluster-specific parameters in each chain.

Classification probabilities

Probabilities ui,g(θ) defined in (3.6) and (3.8) are viewed as parametric functions
of θ. Therefore, their posterior distribution is explored by evaluation of ui,g (θm),
m ∈ 1, . . . ,M , which is computationally expensive, see Sections 7.2 and 7.3.
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Figure 4.2: Simulated dataset of G = 3 clusters, n = 250, ni = 4 and true
value w = (0.25, 0.33, 0.42)⊤ estimated by the GLMM-based model. Traceplots,
kernel density estimates, empirical cumulative distribution functions (ECDF) and
autocorrelation functions (ACF) of four different chains of parameter w.
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However, when we realize that

E [ui,g(θ)|Y; C] = E
[︂
P [Ui = g|θ,Yi; Ci]

⃓⃓⃓
Y; C

]︂
=

= E
[︂
E
[︂
1(Ui=g)|θ,Yi; Ci

]︂ ⃓⃓⃓
Y; C

]︂
= E

[︂
1(Ui=g)

⃓⃓⃓
Y; C

]︂
,

we can use the sampled Um
i for estimating the posterior mean of the classification

probabilities. Specifically, it will be estimated by ˆ︁ui,g = 1
M

M∑︁
m=1

1(Um
i =g), which is

used for a crude classification by (P1) or (P2), see Section 3.2.1. Yet, only a point
estimate for the posterior mean is obtained. To obtain some credible intervals
(ET or HPD) one has to explore the full posterior distribution of classification
probabilities.

This trick with sampled Um
i also cannot be used when the classification proba-

bilities for a newly observed unit not included in the training dataset are desired.

Deviance

Deviance is yet another general goodness-of-fit measure derived from the log-
likelihood function. For given number of mixture components G, it is defined as

DG (θ;Y, C) := −2 log p(Y|θ; C) = −2
n∑︂
i=1

log
⎡⎣ G∑︂
g=1

wgp(Yi|Ui = g,θ; Ci)
⎤⎦ . (4.17)

In fact, this is the penalization-free baseline of AIC or BIC, for which one has
to add 2d or d log n where d is the total number of unknown parameters. Aitkin
et al. (2009) propose to decide about the two values G1 < G2 of the number of
groups on the basis of the posterior probability

P
[︂
DG1 (θ;Y, C) > DG2 (θ;Y, C)

⃓⃓⃓
Y; C

]︂
that compares the deviances of the two nested models.

Yet, with more complicated data structures, which require presence of latent
data Li, it is computationally demanding to evaluate the deviance. The contri-
bution of a single unit i to the deviance has the form of

DG
i = −2ℓ(Yi|θ; Ci) = −2 log

⎡⎣ G∑︂
g=1

wg

∫︂
p (Yi,Li|Ui = g,θ; Ci) dLi

⎤⎦ , (4.18)

where we recognize the summands from classification probabilities (3.4). There-
fore, one has to evaluate ui,g (θm) for M values of θ, for each g = 1, . . . , G and for
each unit i = 1, . . . , n to obtain the posterior distribution of DG, which in total
requires M · G · n numerical approximations of the integral with respect to Li.
Moreover, this process has to be repeated for G ∈ {1, . . . , Gmax}. Hence, efficient
methods for approximation of the integral are desired.

Nevertheless, there are other ways on how to estimate the appropriate number
of clusters within the Bayesian scope. One could simply assume a prior distribu-
tion forG and estimate it as an unknown parameter. However, whenG is changed,
so is the dimension of the parametric space. One has to construct a MCMC sam-
pler capable of transition between parametric spaces of different dimensions, for
example, using the reversible jump methodology. Another possible way, which
will be taken for the GLMM-based model, is to set up the sparse finite mixture
and let the MCMC sampler empty the redundant clusters, see Section 6.3.
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4.4 Model hierarchy
We take a moment here to summarize and visualize the hierarchical structure of
the two proposed models. They both assume a certain order in which elements of
the model are created. In general, hyperparameters are set first. Then, random-
ized hyperparameters and parameters of interest are created. Unobserved latent
data follow immediately afterwards. Only when all parameters and auxiliary
variables are at disposal, the observed outcomes are generated.

This process of generating can be depicted in an oriented graph. It serves
not only as an overview, but also helps to understand which elements truly come
into play in full-conditional distributions. Moreover, the diagrams (Figures 4.3
and 4.4) also help to realize the similarities and the differences between the two
considered models.
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4.4.1 Hierarchy of the threshold concept model
The threshold concept model supposes that the observed binary and ordinal cat-
egories are secretly determined by the intervals, into which corresponding latent
numeric outcome values belong to. Observed numeric outcomes and the latent
numeric outcomes are modelled jointly through joint distribution of random ef-
fects with general covariance matrices Σ, for which a structured prior is assumed.
Simple Dirichlet distribution is assumed for marginal cluster probabilities w with
fixed hyperparameter e0.

To obtain a version of (4.16) tailored for this model, we have to combine the
integrand of (3.5) with the prior distribution (4.3):

p
(︂
w, β, τ , γ, Σ, U , b, Y⋆,OB, Q

⃓⃓⃓
Y; C

)︂
∝

∝
n∏︂
i=1

p
(︂
YOB
i

⃓⃓⃓
Y⋆,OB
i ,γ

)︂
· p
(︂
YN
i ,Y

⋆,OB
i

⃓⃓⃓
bi,β

(Ui), τ (Ui); Ci
)︂
· p
(︂
bi
⃓⃓⃓
Σ(Ui)

)︂
· p(Ui|w)·

· p(w) · p(γ) · p(β | τ ) · p(τ ) · p(Σ|Q) · p(Q). (4.19)

The whole model is summarized by the diagram in Figure 4.3.

Y⋆,OB
iYOB

iYN
i

(2.6)
(2.2) (2.5)

γ

(4.13)

bOB
ibN

i

βOB
βN

DOB (4.5)DN τ
(4.5)

aτ , bτ

Ci

Ci

Σ

(2.21)

ν0

Q

(4.9)

DQ, ν1
(4.10)

Ui

w

(3.1)

e0

(4.11)

Figure 4.3: Diagram depicting the hierarchy of the threshold concept model. Ob-
served data (rectangles), latent unobserved data (rounded corners), parameters
(circles), hyperparameters (not enclosed). Dashed line symbolizes a choice of the
parameter depending on the current cluster.
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4.4.2 Hierarchy of the GLMM-based model
The GLMM-based model structurally differs from the threshold concept model
only in few aspects. There are no latent outcome values, each of the outcomes
(possibly of 5 different types) is modelled directly by a certain GLMM. Instead
of ordered thresholds γ we have ordered intercepts c. Moreover, we allow for
sparse finite mixture by controlling the hyperparamters for e0, which sets up the
prior of the marginal group allocation probabilities w. The models for different
outcomes are joined the same way in both models (through bi).

To obtain a version of (4.16) tailored for the GLMM-based model, we have to
combine the integrand of (3.7) with the prior distribution (4.4):

p
(︂
w, β, τ , c, Σ, U , b, Q, e0

⃓⃓⃓
Y; C

)︂
∝

∝
n∏︂
i=1

⎡⎣∏︂
r∈R

ni∏︂
j=1

pt(r)
(︂
Y r
i,j

⃓⃓⃓
bri ,β

(Ui)
r , τ (Ui)

r , c(Ui)
r ; Ci,j

)︂
· p
(︂
bi
⃓⃓⃓
Σ(Ui)

)︂
· p(Ui|w)

⎤⎦ ·
· p(w|e0) · p(e0) · p(c) · p(β | τ ) · p(τ ) · p(Σ|Q) · p(Q). (4.20)

The whole model is summarized by the diagram in Figure 4.4.

YN
i YP

i YB
i YO

i YC
i

(2.2) (2.7) (2.9) (2.12) (2.14)

c

π

(4.14)

α
(4.15)

bN
i bP

i bB
i bO

i bC
i

βN βP βB βO βC

DN DP DB DO DC
τ

(4.7)

aτ , bτ

Ci

Σ

(2.23)

ν0

Q

(4.9)

DQ, ν1
(4.10)

Ui

w

(3.1)

e0

(4.11)

ae, be
(4.12)

Figure 4.4: Diagram depicting the hierarchy of the GLMM-based model. Ob-
served data (rectangles), latent unobserved data (rounded corners), parameters
(circles), hyperparameters (not enclosed). Dashed line symbolizes a choice of the
parameter depending on the current cluster.
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5. MCMC estimation of the
threshold concept model
This chapter is dedicated solely to the threshold concept model (Sections 2.4.1,
3.3.1, 4.4.1) and derivation of all necessary quantities to construct an MCMC
algorithm. We list down all the full-conditional distributions which are all well
known. Hence, Gibbs sampling is adopted without need for any Metropolis pro-
posal steps. We discuss some of its strengths and weaknesses and then test its
ability to estimate unknown parameters is a simulation study.

5.1 Full-conditional distributions
For this model, the set of all randomized elements (including the latent vari-
ables) of the model Ψ consists of w,β, τ ,γ,Σ,U , b,Y⋆,OB and Q. To derive
full-conditional distributions for all parameters ψ ∈ Ψ, we have to view the right
hand side of (4.19) as a function of parameter ψ, which can be decomposed into
the following products:

p (ψ |Y, Ψ−ψ, H0; C ) ∝

∝
n∏︂
i=1

p
(︂
YOB
i

⃓⃓⃓
Y⋆,OB
i ,γ

)︂
· p
(︂
YN
i ,Y

⋆,OB
i

⃓⃓⃓
bi,β

(Ui), τ (Ui); Ci
)︂
· p
(︂
bi
⃓⃓⃓
Σ(Ui)

)︂
· p(Ui|w)·

· p(w|e0) · p(γ) · p(β | τ ,β0,D) · p(τ |aτ , bτ ) · p(Σ|Q, ν0) · p (Q |DQ, ν1 ) , (5.1)

where H0 denotes all fixed hyperparameters of prior distributions. Here, the
last known values of latent quantities are used and not integrated as in (3.5),
which considerably simplifies the evaluation. Since we work under proportionality,
only factors including the current parameter of interest ψ remain and the rest
is considered constant. One can equivalently read it from Figure 4.3, where full-
conditional distribution of ψ consists of all arrows coming in and out of the
corresponding node.

All derivations are made under the assumption that parameters β, τ and Σ
are all group-specific. Similar derivations (with corresponding changes) can be
made even under different setting of group-specificity of the parameters. Note
that if τ is group-specific, then β (at least the part corresponding to numeric
outcomes) must also be group-specific to preserve the hierarchical structure of
the prior distribution.

5.1.1 Cluster allocation probabilities w
Prior probabilitiesw of belonging to a certain cluster, i.e. wg = P [Ui = g], appear
only in p(Ui|w) and its general Dirichlet prior distribution DirG (e1, . . . , eG) (in
practice we use eg = e0 for all g = 1, . . . , G). Therefore,

p (w |Y, Ψ−w, H0; C ) ∝
n∏︂
i=1

p (Ui|w) · p(w|e1, . . . , eG)
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can be simplified to

p (w |U , e1, . . . , eG ) ∝
n∏︂
i=1

G∏︂
g=1

w
1(Ui=g)
g ·

G∏︂
g=1

weg−1
g =

G∏︂
g=1

wn
(g)(U)+eg−1
g ,

where n(g)(U) = ∑︁n
i=1 1(Ui=g) is the total number of units (from n possible)

currently within the cluster g. We recognize the proportional shape of pdf of
Dirichlet distribution, thus, under eg = e0 we have

w
⃓⃓⃓
U , e0 ∼ DirG (n(U ) + e01) , (5.2)

where n(U) =
(︂
n(1)(U ), . . . , n(G)(U)

)︂⊤
.

5.1.2 Group-allocation indicators Ui

According to (5.1), the group-allocation indicator Ui of unit i appears in its prior
distribution Ui|w and at places, where it selects the corresponding group-specific
parameter:

p (Ui |Y,Ψ−Ui
,H0; C ) ∝ p

(︂
YN
i ,Y

⋆,OB
i

⃓⃓⃓
bi,β

(Ui), τ (Ui); Ci
)︂
· p
(︂
bi
⃓⃓⃓
Σ(Ui)

)︂
· p (Ui|w) .

Ui only attains values g ∈ {1, . . . , G}. Therefore, we aim to calculate the full-
conditional probability that unit i is allocated in the group g:

P
[︂
Ui = g

⃓⃓⃓
· · ·

]︂
∝ wg ·

∏︂
r∈RNum

(︂
τ (g)
r

)︂ni
2 ·

⃓⃓⃓
Σ(g)

⃓⃓⃓− 1
2 · exp

{︃
−1

2b
⊤
i Σ−(g)bi

}︃
·

· exp
⎧⎨⎩−1

2
∑︂

r∈RNum

ni∑︂
j=1

τ (g)
r

(︂
Y r
i,j − η

r,(g)
i,j

)︂2
− 1

2
∑︂

r∈ROB

ni∑︂
j=1

(︂
Y ⋆,r
i,j − η

r,(g)
i,j

)︂2
⎫⎬⎭ , (5.3)

where ηr,(g)
i,j =

(︂
xri,j

)︂⊤
β(g)
r +

(︂
zri,j

)︂⊤
bri is the linear predictor of j-th observation

of outcome r ∈ R of unit i when belonging to the group g. Unlike the clustering
probabilities (3.6), there is no integration involved since latent variables are at
our disposal.

In case some parameter is not group-specific, the factors not depending on g
could be skipped in the evaluation. The right hand side of (5.3) is first computed
on log-scale, then a suitable constant is added to all G expressions to obtain
reasonable exponentials which are then summed and proportionally compared to
obtain the final probabilities.

5.1.3 Latent numeric variables Y⋆,OB

Latent numeric outcomes Y⋆,OB for actually measured ordinal and binary out-
comes YOB appear only in the thresholding procedure (2.19) and the multivariate
LME (2.5) for Y⋆,OB:

p
(︂
Y⋆,OB

⃓⃓⃓
Y,Ψ−Y⋆,OB ; C

)︂
∝ p

(︂
YOB

⃓⃓⃓
Y⋆,OB,γ

)︂
· p
(︂
Y⋆,OB

⃓⃓⃓
b,U ,β, τ ; C

)︂
.

Given random effects, both thresholding and LME for the latent variables are
independent for all r ∈ ROB, i = 1, . . . , n and j = 1, . . . , ni. Ignoring the thresh-
olding, Y ⋆,r

i,j would follow N
(︂
η

(Ui),r
i,j , 1

)︂
according to (2.5), however, corresponding
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density is now limited by indicator 1(γr
k−1 , γ

r
k]
(︂
Y ⋆,r
i,j

)︂
from (2.19), where k = Y r

i,j.
Therefore, the full-conditional distribution is the truncated normal distribution
on the interval

(︂
γrk−1 , γ

r
k]:

Y ⋆,r
i,j

⃓⃓⃓
Y r
i,j = k, bi, Ui,β,γ; C ∼ TN

(︂
η

(Ui),r
i,j , 1, γrk−1, γ

r
k

)︂
. (5.4)

5.1.4 Thresholds γ
Parameter γ influences (5.1) only in the thresholding phase (2.19) and in the
prior distribution (4.13) of γ:

p (γ |Y,Ψ−γr ; C ) ∝
n∏︂
i=1

p
(︂
YOB
i

⃓⃓⃓
Y⋆,OB
i ,γ

)︂
· p (γ) .

Let us consider ordinal outcome r ∈ ROrd and the corresponding set of thresholds:
−∞ = γr−1, γ

r
0,γ

r, γrKr−1 = ∞. Let Yrk be the set of all latent numeric outcomes
Y ⋆,r
i,j such that the truly measured ordinal category is k = 0, . . . , Kr − 1, i.e.

Yrk =
{︂
Y ⋆,r
i,j : Y r

i,j = k, i = 1, . . . , n, j = 1, . . . , ni
}︂
,

which is assumed to be non-empty (all levels of outcome Kr are attained at
least once). The latent numeric variables had to be generated according to the
threshold concept, therefore, the following inequalities hold:

−∞ < y0
∈Yr

0

< γr0 < y1
∈Yr

1

< γr1 < y2
∈Yr

2

< · · · < γrKr−2 < yKr−1
∈Yr

Kr−1

<∞.

Had γ been allowed to be group-specific parameter, these inequalities could have
been broken by units switching their current allocation. Under the uniform
prior (4.13) for γr we get that the individual thresholds γrk are uniformly dis-
tributed on intervals given by maxima and minima of the corresponding sets:

γrk |Y r,Y ⋆,r ∼ Unif
[︄
max
y∈Yr

k

y, min
y∈Yr

k+1
y

]︄
, k = 1, . . . , Kr − 2. (5.5)

5.1.5 Precision parameters τ
Parameters τ =

{︂
τ (g)
r : g = 1, . . . , G, r ∈ RNum

}︂
are the inverse variance of errors

of the supposed LME models over numeric outcomes. The right-hand side of (5.1)
includes τ in the supposed LME for YN

i and the prior distribution of (β, τ ):

p (τ |Y,Ψ−τ ,H0; C ) ∝
n∏︂
i=1

p
(︂
YN
i

⃓⃓⃓
bi,β

(Ui), τ (Ui); Ci
)︂
· p (β|τ ;β0,D) · p (τ |aτ , bτ ) .

From the product structure of (2.20) and prior (4.5), we see that individual τ (g)
r

are distributed independently of each other given other parameters. Then, the
pdf of the full-conditional distribution of single τ (g)

r is proportional to

p
(︂
τ (g)
r

⃓⃓⃓
Y r,U , br,β(g)

r ,β0,r,Dr, aτ , bτ ; C
)︂
∝
(︂
τ (g)
r

)︂ 1
2

∑︁
i∈Ng(U)

ni + 1
2d

F
r+aτ −1

·

· exp

⎧⎪⎨⎪⎩−τ (g)
r

⎡⎢⎣1
2

∑︂
i∈Ng(U)

ni∑︂
j=1

(︂
Y r
i,j − η

r,(g)
i,j

)︂2
+ 1

2

dF
r∑︂

j=1

(︂
β

(g)
r,j − βr0,r,j

)︂2

drj,j
+ bτ

⎤⎥⎦
⎫⎪⎬⎪⎭ ,
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where Ng(U) = {i : Ui = g, i = 1, . . . , n} is a set of units currently belonging to
group g. For Y r, C and current values of U , br and β(g)

r let us denote

˜︁a(g)
τ,r = 1

2
∑︂

i∈Ng(U)
ni + dF

r

2 + aτ ,

˜︁b(g)
τ,r = 1

2
∑︂

i∈Ng(U)

ni∑︂
j=1

(︂
Y r
i,j − η

r,(g)
i,j

)︂2
+ 1

2
(︂
β(g)
r − β0,r

)︂⊤
D−1
r

(︂
β(g)
r − β0,r

)︂
+ bτ .

Under this notation, we see that

τ (g)
r

⃓⃓⃓
Y r,U , br,β(k)

r ,β0,r,Dr, aτ , bτ ; C ∼ Γ
(︂˜︁a(g)

τ,r ,
˜︁b(g)
τ,r

)︂
(5.6)

independently for each r ∈ RNum and g = 1, . . . , G.

5.1.6 Fixed effects β
Fixed effects β appear in (5.1) only in the LME model specification (2.1), (2.5)
and prior distribution (4.5):

p (β |Y,Ψ−β,H0; C ) ∝
n∏︂
i=1

p
(︂
YN
i ,Y

⋆,OB
i

⃓⃓⃓
bi,β

(Ui), τ (Ui); Ci
)︂
· p (β|τ ,β0,D) ,

which can be decomposed for outcomes r ∈ R and g = 1, . . . , G as follows:

p
(︂
β(g)
r

⃓⃓⃓
· · ·

)︂
∝ exp

{︄
−τ

(g)
r

2
(︂
β(g)
r − β0,r

)︂⊤
D−1
r

(︂
β(g)
r − β0,r

)︂}︄
·

· exp
{︄
−τ

(g)
r

2
(︂˜︂Y r

Ng(U) − Xr
Ng(U)β

(g)
r

)︂⊤ (︂˜︂Y r
Ng(U) − Xr

Ng(U)β
(g)
r

)︂}︄
,

where notation •Ng(U) restricts the expression • to the subset of units in group g:

Xr
Ng(U) =

⎛⎜⎜⎜⎝
...
Xr
i

...

⎞⎟⎟⎟⎠ , i ∈ Ng(U ),

˜︂Y r
Ng(U) =

⎧⎪⎨⎪⎩
{︂
(Y r

i − Zribri )
⊤ , i ∈ Ng(U)

}︂
, if r ∈ RNum,{︂

(Y ⋆,r
i − Zribri )

⊤
, i ∈ Ng(U )

}︂
, if r ∈ ROB.

Using basic algebraic operations and ignoring several multiplicative constants, we
can rewrite the pdf of full-conditional distribution of β(g)

r into:

p
(︂
β(g)
r

⃓⃓⃓
Y r,U , br, τ (g)

r ,β0,r,Dr; C
)︂
∝

exp
{︄
−τ

(g)
r

2
(︂
β(g)
r − ˜︁β(g)

r

)︂⊤
[︃(︂
Xr

Ng(U)

)︂⊤
Xr

Ng(U) + D−1
r

]︃ (︂
β(g)
r − ˜︁β(g)

r

)︂}︄
,

where

˜︁β(g)
r =

[︃(︂
Xr

Ng(U)

)︂⊤
Xr

Ng(U) + D−1
r

]︃−1 (︃(︂
Xr

Ng(U)

)︂⊤ ˜︂Y r
Ng(U) + D−1

r β0,r

)︃
,
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which compared to the pdf of multivariate normal distribution yields

β(g)
r

⃓⃓⃓
Y r,U , br, τ (g)

r ,β0,r,Dr; C ∼ NdF
r

(︄ ˜︁β(g)
r ,

1
τ

(g)
r

[︃(︂
Xr

Ng(U)

)︂⊤
Xr

Ng(U) + D−1
r

]︃−1
)︄
.

(5.7)
The variance matrix is symmetric and positive-definite (since A⊤A ≥ 0 in

general for any matrix A and D−1
r > 0), hence, Cholesky decomposition (see

Section 7.4, Algorithm 5) is in practice used to efficiently sample from this dis-
tribution. This is a typical example where the prior distribution regularizes the
likelihood contribution.

5.1.7 Scale matrix Q for Σ
Q is an auxiliary parameter that makes prior distribution of matrices Σ (4.9)
more flexible within Gibbs sampler. The right-hand side of (5.1) shrinks into

p (Q |Y,Ψ−Q,H0; C ) ∝ p (Σ |Q, ν0) · p (Q |DQ, ν1 ) ,

where the combined pdfs on the right hand side correspond to Wishart distribu-
tion. Since Σ is considered group-specific, Q is assumed to give rise to G matrices
Σ(g). Combining the G+ 1 Wishart pdfs (4.9) and (4.10) we obtain

p
(︂
Q−1

⃓⃓⃓
Σ, ν0, ν1,DQ

)︂
∝
⃓⃓⃓
Q−1

⃓⃓⃓Gν0+ν1−dR−1
2 exp

⎧⎨⎩−1
2 Tr

⎡⎣⎛⎝ G∑︂
g=1

Σ−(g) + D−1
Q

⎞⎠Q−1

⎤⎦⎫⎬⎭ ,
which resembles again a pdf of Wishart distribution. Therefore,

Q−1
⃓⃓⃓
Σ, ν0, ν1,DQ ∼ WdR

⎛⎜⎝
⎡⎣ G∑︂
g=1

Σ−(g) + D−1
Q

⎤⎦−1

, Gν0 + ν1

⎞⎟⎠ . (5.8)

From a practical point of view, it is convenient to work directly with Q−1. The
inversion to Q is unnecessary.

5.1.8 Covariance matrices Σ for random effects b
Parameter Σ is the set of G covariance matrices Σ(g) for random effects bi that
contributes to the right-hand side of (5.1) in the pdf for random effects (2.21)
and in the prior distribution of Σ given by (4.9):

p (Σ |Y,Ψ−Σ,H0; C ) ∝
n∏︂
i=1

p
(︂
bi
⃓⃓⃓
Σ(Ui)

)︂
· p (Σ |Q, ν0) .

Again, we need to divide units into the groups Ng(U), g = 1, . . . , G according
to their current allocation indicators U . The equation above decomposes into G
independent parts – one for each group g = 1, . . . , G. Considering the group g,
the right-hand side of the equation above reduces into

p
(︂

Σ−(g)
⃓⃓⃓
U , b,Q, ν0

)︂
∝

∝
⃓⃓⃓
Σ−(g)

⃓⃓⃓n(g)(U)+ν0−dR−1
2 exp

⎧⎨⎩−1
2 Tr

⎡⎣⎛⎝Q−1 +
∑︂

i∈Ng(U)
bib

⊤
i

⎞⎠Σ−(g)

⎤⎦⎫⎬⎭ ,
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which again resembles a pdf of Wishart distribution for the precision matrix
Σ−(g) =

(︂
Σ(g)

)︂−1
. Therefore, independently for all g = 1, . . . , G

Σ−(g)
⃓⃓⃓
U , b,Q, ν0 ∼ WdR

(︂ ˜︁Q(g), n(g)(U) + ν0
)︂
, (5.9)

where ˜︁Q(g) =
(︂ ˜︁Q−(g)

)︂−1
and ˜︁Q−(g) = Q−1 +

∑︂
i∈Ng(U)

bib
⊤
i .

From a practical point of view, it is convenient to work directly with Σ−(g). The
inversion to Σ(g) is redundant since sampling random effects bi requires (as we
will soon see) only the precision matrix Σ−(g).

5.1.9 Random effects b
The key role of our model is played by the random effects bi, i = 1, . . . , n that
create linear predictors η

r,(g)
i,j , g = 1, . . . , G, r ∈ R and j = 1, . . . , ni. The

pdf of corresponding full-conditional distribution (5.1) is based on the assumed
LME (2.1), (2.5) and the joint distribution of random effects (2.21):

p (b |Y,Ψ−b,H0; C ) ∝
n∏︂
i=1

p
(︂
YN
i ,Y

⋆,OB
i

⃓⃓⃓
bi,β

(Ui), τ (Ui); Ci
)︂
·
n∏︂
i=1

p
(︂
bi
⃓⃓⃓
Σ(Ui)

)︂
.

Clearly, random effects bi will be distributed independently even in the full-
conditional distribution.

Let us select a unit i (say from group Ui = g) in which case its corresponding
pdf is of the shape

p (bi | · · · ) ∝
∏︂

r∈RNum

exp
{︄
−τ

(g)
r

2
(︂˜︂Y r

i − Zribri
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)︂}︄
·

·
∏︂

r∈ROB
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−1

2
(︂˜︂Y ⋆,r
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)︂⊤ (︂˜︂Y ⋆,r
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)︂}︃
· exp

{︃
−1

2b
⊤
i Σ−(g)bi

}︃
,

where ˜︂Y r
i = Y r

i − Xr
iβ

(g)
r and ˜︂Y ⋆,r

i = Y ⋆,r
i − Xr

iβ
(g)
r . Constructing

˜︂Yi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...√︂
τ

(g)
r
˜︂Y r
i

...˜︂Y ⋆,r
i
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

r ∈ RNum,

r ∈ ROB,

˜︁Zi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . √︂
τ

(g)
r Zri

. . .
Zri

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

we can simplify the above to

exp
{︃
−1

2
(︂˜︂Yi − ˜︁Zibi)︂⊤ (︂˜︂Yi − ˜︁Zibi)︂− 1

2b
⊤
i Σ−(g)bi

}︃
,

which after several algebraic operations and ignoring multiplicative constants
becomes

exp
{︃
−1

2
(︂˜︁bi − bi)︂⊤ [︂˜︁Z⊤

i
˜︁Zi + Σ−(g)

]︂ (︂˜︁bi − bi)︂}︃ ,
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where ˜︁bi =
[︂˜︁Z⊤

i
˜︁Zi + Σ−(g)

]︂−1 (︂˜︁Z⊤
i
˜︂Yi)︂ . Therefore, the full-conditional distribution

of bi for a unit belonging to group g = 1, . . . , G is

bi
⃓⃓⃓
YN
i ,Y

⋆,OB
i , Ui = g,β, τ ,Σ; Ci ∼ NdR

(︃˜︁bi, [︂˜︁Z⊤
i
˜︁Zi + Σ−(g)

]︂−1
)︃
. (5.10)

Similarly as for the fixed effects, utilizing Cholesky decomposition of the preci-
sion matrix is an efficient way for sampling from this distribution, see Section 7.4,
Algorithm 5.

5.2 Gibbs sampling algorithm
Posterior distribution p(Ψ|Y; C) of Ψ (consisting of the model parameters θ, la-
tent variables L and randomized hyperparameters H) and any parametric func-
tion of Ψ will be estimated using MCMC methodology, see Section 4.3. We
adopted the well known Gibbs sampling scheme in which a new value of each of the
parameters is sampled from its full-conditional distribution while always utilizing
the last known values of other parameters. Due to our (semi)-conjugate choice
of prior distributions, the full-conditional distributions are from well-known fam-
ilies, hence, straightforward to be sampled from. In previous section, we derived
the required distributions and now we summarize them into the Gibbs sampling
algorithm, see Algorithm 1.

Let us discuss more the initialization phase of the algorithm. Once the data
of longitudinal format are passed down, we have to set values of technical and
prior distribution parameters. Especially, the number of clusters G, the length of
the burn-in period B (initial thrown-away part of the chain), the desired length
of the remaining chain M (multiplied by the required thinning parameter). It is
always a good idea to sample several such chains in parallel to check convergence
to the stationary distribution to evade local posterior modes. Each chain requires
different initial values of the sampled states Ψ, which could be easily achieved
by generating random partitions of n units into G clusters and estimating the
group-specific parameters from the data partitioned into the initial clusters.

The individual initialization steps given in Algorithm 1 could be replaced by
simpler solutions. For example, sampling random effects b0

i from N (0, σ2) with
fixed low σ2 or even fixing b0

i = 0 and Σ(g),0 = diag(102). One can use Algorithm 1
with B > 0 and M = 0 to save the last known state ΨB and use it as initial
values in the next iteration of the algorithm.

Though, sampling from the full-conditionals seems elegant at first sight, some
steps slow down the convergence. For example, when started from inappropriate
values of γ, it takes even tens of thousands steps to converge. The length of the
convergence phase heavily depends on the size of the dataset; with the PBC910
of 918 datarows we barely notice any problems. However, with the EU-SILC
database of 27 386 × 4 rows we witness the extremely slow convergence. The
problem comes from the structure of (5.5), where we sample uniformly from an
interval given by the maximal latent outcome value of all rows with the observed
Y r
i,j = k and the minimal latent outcome value of all rows with the observed
Y r
i,j = k + 1. Hence, with larger sample size the interval becomes naturally

thinner. Therefore, the window of opportunity to change is negligible, hence
the very slow convergence. Once the analyst becomes familiar with the dataset,
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the initial value γ0 can be manually adjusted to avoid long waiting times of
reaching the stationary distribution. Slow convergence is observed also for other
parameters tied with the latent quantities, e.g. Σ, although several hundred of
burn-in steps are enough to eliminate such problem in this case even for large
datasets.

Algorithm 1 Gibbs sampling for the threshold concept model
Input: Data Y of longitudinal profiles of n units and covariates C.
Set the length of the burn-in period B and the final length of the chains M .
Choose the number of clusters G and set the fixed hyperparameters H0.
Declare or find initial values Ψ0 in this order:

• divide n units randomly into G clusters by U0
i ∼ Unif {1, . . . , G};

• estimate the thresholds γ0 to fit the proportions of YO to N (0, 1);
• take some values from intervals given by γ0 for latent outcomes Y⋆,OB;
• estimate β0 using linear regression ignoring random effects;
• estimate b0

i using linear regression of (latent) outcomes lowered by the
fixed part of the predictor;

• estimate τ 0 by comparing the predictor to (latent) outcomes;
• estimate Σ0 from b0

i by a sample covariance matrix;
• estimate Q0 by inverting the mean of all Σ(g),0 divided by ν0.

Gibbs sampling Always use the very last known values of other parameters,
i.e. either from Ψm−1 or Ψm:
for m in 1 : (B +M) do

• wm |U , e0
(5.2)∼ DirG (n(U) + e01);

• Um
i ∼ P

[︂
Ui = g

⃓⃓⃓
YN
i ,Y

⋆,OB
i , bi,w,β, τ ,Σ; Ci

]︂ (5.3)= · · · ;

• Y ⋆,r,m
i,j

⃓⃓⃓
Y r
i,j = k, bi, Ui,β,γ; C (5.4)∼ TN

(︂
η

(Ui),r
i,j , 1, γrk−1, γ

r
k

)︂
for r ∈ ROB;

• γr,mk

⃓⃓⃓
Y r,Y ⋆,r (5.5)∼ Unif

[︄
max
y∈Yr

k

y, min
y∈Yr

k+1
y

]︄
for r ∈ ROrd, k = 1, . . . , Kr−2;

• τ (g),m
r

⃓⃓⃓
Y r,U , br,β(g)

r ,β0,r,Dr, aτ , bτ ; C
(5.6)∼ Γ

(︂˜︁a(g)
τ,r ,

˜︁b(g)
τ,r

)︂
for r ∈ RNum;

• β(g),m
r

⃓⃓⃓
Y r,U , br, τ (g)

r ,β0,r,Dr; C
(5.7)∼

NdF
r

(︄ ˜︁β(g)
r ,

1
τ

(g)
r

[︃(︂
Xr

Ng(U)

)︂⊤
Xr

Ng(U) + D−1
r

]︃−1
)︄

for r ∈ R;

• (Qm)−1
⃓⃓⃓
Σ, ν0, ν1,DQ

(5.8)∼ WdR

⎛⎝[︄ G∑︁
g=1

Σ−(g) + D−1
Q

]︄−1

, Gν0 + ν1

⎞⎠;

• Σ−(g),m |U , b,Q, ν0
(5.9)∼ WdR

(︂ ˜︁Q(g), n(g)(U) + ν0
)︂
;

• bmi
⃓⃓⃓
YN
i ,Y

⋆,OB
i , Ui = g,β, τ ,Σ; Ci

(5.10)∼ NdR

(︃˜︁bi, [︂˜︁Z⊤
i
˜︁Zi + Σ−(g)

]︂−1
)︃

.
end for
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5.3 Simulation study
To demonstrate the functionality of the implemented methodology for the thresh-
old concept model, we performed a simulation study. To this end, data consisting
of a numeric, a binary and an ordinal variable were generated under the as-
sumption of different types of random effects structure. The only parameter
distinguishing the latent groups (G = 2 or G = 3) was the parameter connected
to the parametrization of time, i.e. intercept or slope. Parameters describing the
covariance structure (τ and Σ−1) were held equal for all latent groups.

Simulation design

Each type of response (numeric, ordinal and binary) is represented by only one
longitudinally measured variable (Y N

i,j, Y O
i,j, Y B

i,j, i = 1, . . . , n and j = 1, . . . , ni).
We set the number ni of observations per one unit to be fixed at ni = 4 for each
of the n units, n ∈ {100, 500, 1000}, which also corresponds to the same amount
of observations per household available in the EU-SILC data. The part of the
predictor, which is common to all types of variables, is of the form

1 ·X1
i,j − 2 ·X2

i,j, where X1
i,1 = · · · = X1

i,4
iid∼ Bernoulli (0.5) and X2

i,j
iid∼ Unif (0, 1) .

Then, we suppose that each unit has its set of observational times 0 < ti,1 <
ti,2 < ti,3 < ti,4 < 1 which were generated as an ordered sample from a uniform
distribution on an interval (0, 1). We assume the linear parametrization of time.
Altogether, the fixed part of the predictor takes the form of ηF

i,j = β0 + β1X
1
i,j +

β2X
2
i,j + β3ti,j. We consider three types of differences assumed among the G = 2

or G = 3 latent groups:

a) (d = intercept): only the intercept term β
(g)
0 is group-specific, but the slope

parameter β3 is not,

b) (d = slope): only the slope parameters β(g)
3 is group-specific, but the inter-

cept term β0 is not,

c) (d = both): both the intercept and the slope terms β(g)
0 , β(g)

3 are group-
specific.

Nevertheless, the model is always estimated under group-specificity of the whole
β(g) since the implementation for this model could not select only a subset of
the fixed effects β parameters to be group-specific. This feature is available only
for the GLMM-based model, see Section 7.1. The values of intercept and slope
for each of the nine scenarios were chosen in different ways to obtain clusters
distinguishable by the eye (see Figure 5.1).

Another level of scenario settings arise from considering the three types of
structures of the random effects:

1. (r = intercept): ηR
i,j = b0,i, random intercept term and fixed slope,

2. (r = slope): ηR
i,j = b1,iti,j, fixed intercept term and random slope,

3. (r = both): ηR
i,j = b0,i + b1,iti,j, both intercept and slope are random effects.
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We keep the same random effects structure for all outcome types. Therefore, the
random effects of i-th unit are multivariate normal of dimension three or six:

b0,i =

⎛⎜⎜⎝
bN

0,i

bO
0,i

bB
0,i

⎞⎟⎟⎠ ∼ N3 (0, Σ00) , b1,i =

⎛⎜⎜⎝
bN

1,i

bO
1,i

bB
1,i

⎞⎟⎟⎠ ∼ N3 (0, Σ11) ,

bi =
⎛⎝b0,i

b1,i

⎞⎠ ∼ N6

⎛⎝⎛⎝0
0

⎞⎠ ,
⎛⎝Σ00 Σ01

Σ10 Σ11

⎞⎠⎞⎠ ,
for the three scenarios, respectively. Blocks of parameter Σ were chosen in the
following way:

Σ00 =

⎛⎜⎜⎝
2.0

1.6
1.2

⎞⎟⎟⎠
⎛⎜⎜⎝

1.0 0.6 0.6
0.6 1.0 0.6
0.6 0.6 1.0

⎞⎟⎟⎠
⎛⎜⎜⎝

2.0
1.6

1.2

⎞⎟⎟⎠ ,

Σ11 =

⎛⎜⎜⎝
0.8

0.6
0.4

⎞⎟⎟⎠
⎛⎜⎜⎝

1.0 0.4 0.4
0.4 1.0 0.4
0.4 0.4 1.0

⎞⎟⎟⎠
⎛⎜⎜⎝

0.8
0.6

0.4

⎞⎟⎟⎠ ,

Σ01 = Σ⊤
10 =

⎛⎜⎜⎝
2.0

1.6
1.2

⎞⎟⎟⎠
⎛⎜⎜⎝

0.5 0.2 0.2
0.2 0.5 0.2
0.2 0.2 0.5

⎞⎟⎟⎠
⎛⎜⎜⎝

0.8
0.6

0.4

⎞⎟⎟⎠ .
These three types of random effects structure are combined with the three

types of differences leading to nine different scenarios that are examined for G =
2, 3 and different sample sizes n. The group allocation indicator Ui was always
generated from a uniform distribution, which results in clusters of comparable
sizes. All (latent) numeric outcomes were sampled with unit variance τ = 1. The
binary variable was obtained by threshold γB

0 = 1 and the ordinal variable by
thresholds γO

0 = −1 and γO
1 = 2. Therefore, if estimated under γB

0 = γO
0 = 0 the

estimates for latent numeric outcomes and γO
1 should be accordingly shifted.

Each scenario under given G and n was replicated 200-times to explore the
properties of the resulting estimators and the classification procedure. For each
dataset, the inference is based on an MCMC sample of size M = 10 000. The
classification probabilities were calculated for a thinned (1:10) sample to save
on the computational time needed to evaluate the multivariate normal integrals
(7.4). The simulation study was conducted on a computational cluster consisting
of CPU units: Intel(R) Xeon(R) CPU E5-2620 v2, 2.10 GHz, 64 GB RAM. The
mean computation time for generating a chain of M = 10 000 sampled values
followed by a much more demanding computation of 1 000 classification probabil-
ities for all n units would not take less than an hour even for the lowest values of
n = 100 and G = 2 (around 80 minutes). The most challenging combination of
n = 1 000 and G = 3 took around 1 200 minutes. The number of calls of pmvnorm
used for the approximation of posterior distribution of classification probabilities
(see Section 7.2) seem to influence the computational time the most; the MCMC
sampling itself takes only several seconds to complete (about a minute for the
most challenging case n = 1 000 and G = 3).
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(b) G = 3.

Figure 5.1: Simulated samples of a numeric outcome from the threshold concept
model distinguishing different scenario types (row difference, column structure of
random effects).
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The accuracy of the estimators for the fixed effects

First, Figure 5.2 focuses on the properties of the posterior means of the two main
fixed effects (intercept β0 and slope β3). The colours distinguish the estimates in
different groups (g = 1, . . . , G) and the corresponding true values of the intercept
and slope parameters are captured by dashed lines. The dark grey colour depicts
the true value shared by all groups. Each segment represents 2.5% and 97.5%
quantiles of 200 times replicated estimators and the full circle represents its mean.
Figure 5.2 provides estimates of parameters belonging to ordinal outcome only;
plots for numeric and binary would depict analogous results.

Figure 5.2 demonstrates that the proposed procedure is capable of providing
the estimators with reasonable statistical properties despite the latent modelling
and the threshold concept. In most cases, it successfully discovers the difference
among groups as intervals of different colours tend not to overlap with each
other. There is also an apparent decreasing trend in standard deviation as n
increases, suggesting consistency of the estimators. This is disrupted only when
the corresponding estimate does not reach the true value. This phenomenon
occurs mostly in the estimation of the intercept term when it is considered to be
random and different among clusters at the same time. Such behaviour can also
be seen for the group-specific slope term when both intercept and slope term are
random effects. In these situations, the estimates are shrunk towards the mean
of the true values. This might be a result of a combination of the incapability of
discrimination between groups for low value of n and the fact that LME usually
tends to shrink random effects to zero. In the case of G = 3, this effect does
not fully vanish even for n = 1 000, see the row both and the column intercept.
However, it seems that sufficiently large number of units n can overcome this
issue.
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(b) G = 3.

Figure 5.2: 95% quantile bounds and means for the intercept and slope parame-
ters for the ordinal outcome under different simulation scenarios.
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Classification abilities

First, Table 5.1 contains the percentages of the correctly classified units using
the HPD interval rule (I2) averaged across the 200 replications. This percentage
differs scenario by scenario as the random structures and differences among the
groups interact in different ways leading to diverse success rates. For example, the
case with a group-specific random slope successfully classifies the vast majority
of units for both G = 2 and G = 3, which is in agreement with the strict
separation in the corresponding plots of Figure 5.1. Classification does not work
satisfactorily in the problematic cases discussed above in the previous subsection.
Since for the low values of n the difference between groups is not estimated to be
as strict as it should be, a much larger percentage of units is kept unclassified in
such cases. By increasing n, the percentage of unclassified units rapidly decreases
and converts mainly into the correctly classified category. Nevertheless, under all
scenarios, we managed to keep the misclassification rate very low, always under
10%. The unclassified proportion is also much higher for G = 3 as one of the
groups (green) is surrounded from both sides, which significantly reduces the
ability to distinguish among groups, see Figure 5.1b for illustration.

The classification ability of our approach will also be evaluated by calculating
the overall probability that a unit belonging to the cluster g is correctly classified
into this cluster. To this end, for each g we calculate the arithmetic mean pg of
the MCMC posterior mean estimates ˆ︁Ui,g of the allocation probabilities (means
of ui,g(θm),m = 1, . . . ,M , the evaluation is fully explained in Section 7.2) of
belonging to the cluster g across all true cluster members:

pg = 1
|i : Ui = g|

∑︂
i:Ui=g

ˆ︁Ui,g. (5.11)

Further, to explore the impact of the longitudinally increasing amount of informa-
tion, we also calculated the classification probabilities “dynamically”. Meaning,
that for each unit we pretend a situation that unit i is to be classified on the
basis of a set of first j ∈ {1, . . . , ni} longitudinal observations that enter the ex-
pression (3.6) and consequently also the expression (5.11). Figure 5.3 shows the
mean and the quantile bounds of such a dynamically calculated mean probabil-
ities p2 based on 200 replications of experiments with G = 3 clusters. Group 2
(green) has been chosen for demonstration as it is the middle one that overlaps
the other two, which covers the most problematic case (with respect to successful
classification).

If a difference among groups lies only in the random intercept term, then
there seems to be no improvement with any additional observation. However, in
other scenarios, the probability improves with any additional observation from
later times as they help to fit the corresponding medium slope value better. This
results in rejecting the low and extremely large slope values of other groups,
and therefore increasing the probability of classification towards the true middle
group. It also improves with the increasing number of units n since the groups
are then better distinguished.

78



1 2 3 4 1 2 3 4 1 2 3 4

0

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

1

in
te

rc
ep

t
sl

op
e

bo
th

intercept slope both

Number of first observations available

Parameter differing among classes

S
tr

uc
tu

re
 o

f r
an

do
m

 e
ffe

ct
s

C
la

ss
ifi

ca
tio

n 
pr

ob
ab

ili
ty

● ● ● ●● ● ● ●● ● ● ●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
● ●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●
●

● ● ● ●
● ● ● ●● ● ● ●

●
●

●
●

●

●

●

●

●

●

●

●

● ● ● ●●

●

●
●

●

●

●
●

Figure 5.3: Units of group g = 2 when G = 3. The mean and 2.5% and 97.5%
quantiles of mean classification probabilities p2 towards the true group calculated
dynamically using only first j ∈ {1, 2, 3, 4} observations under several random
effects structure and difference among G = 3 groups. Three lines of the same
colour in one cell correspond to the increasing values of n ∈ {100, 500, 1000}.
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Table 5.1: Percentages (standard deviation) of correctly classified, unclassified
and misclassified units using the HPD interval rule (I2) for several choices of n,
G, structure of random effects and group differences in 200 replications.

r
1

d
2

n
G = 2 G = 3

Correct [%] Uncl. [%] Miscl. [%] Correct [%] Uncl. [%] Miscl. [%]

in
te

rc
ep

t
in

te
rc

ep
t 100 27.0 (17.2) 63.2 (25.4) 9.8 (13.7) 23.0 (17.5) 70.2 (21.0) 6.8 (9.4)

500 62.5 (27.2) 33.0 (27.3) 4.4 (3.8) 44.3 (20.6) 50.8 (22.1) 4.9 (4.4)

1000 85.1 (6.7) 10.1 (7.1) 4.8 (0.9) 58.6 (16.9) 35.5 (17.2) 6.0 (3.1)

in
te

rc
ep

t
slo

pe

100 76.8 (5.4) 20.3 (5.5) 2.9 (1.9) 56.0 (8.5) 40.4 (8.9) 3.6 (2.4)

500 86.1 (1.8) 8.9 (1.8) 5.0 (1.0) 74.6 (2.0) 19.0 (2.1) 6.4 (1.2)

1000 87.5 (1.1) 6.7 (0.9) 5.9 (0.7) 78.2 (1.5) 13.8 (1.5) 8.0 (0.8)

in
te

rc
ep

t
bo

th

100 86.5 (4.4) 12.0 (4.4) 1.5 (1.1) 58.0 (9.4) 38.5 (10.2) 3.4 (2.2)

500 92.9 (1.4) 4.5 (1.1) 2.6 (0.7) 76.9 (2.5) 16.5 (2.5) 6.7 (1.1)

1000 93.8 (0.8) 3.3 (0.6) 2.9 (0.5) 79.4 (1.6) 12.8 (1.6) 7.8 (0.8)

slo
pe

in
te

rc
ep

t 100 96.2 (2.6) 3.4 (2.5) 0.4 (0.6) 61.2 (15.5) 36.4 (15.7) 2.3 (1.8)

500 97.9 (0.5) 1.5 (0.5) 0.6 (0.4) 87.6 (2.2) 9.2 (2.2) 3.2 (0.7)

1000 98.3 (0.4) 0.9 (0.3) 0.8 (0.3) 90.2 (1.2) 6.2 (1.1) 3.6 (0.5)

slo
pe

slo
pe

100 80.1 (20.4) 16.3 (19.0) 3.6 (8.7) 85.7 (13.5) 13.3 (13.6) 1.0 (1.2)

500 92.8 (1.5) 4.6 (1.4) 2.6 (0.7) 94.9 (1.2) 3.6 (1.0) 1.5 (0.5)

1000 93.9 (0.9) 3.3 (0.7) 2.8 (0.5) 95.5 (0.7) 2.6 (0.5) 1.9 (0.4)

slo
pe

bo
th

100 85.3 (18.0) 13.8 (18.0) 0.9 (0.9) 62.2 (23.5) 35.8 (23.4) 2.0 (2.7)

500 96.2 (1.0) 2.6 (0.9) 1.3 (0.6) 92.4 (1.7) 5.5 (1.5) 2.1 (0.8)

1000 96.7 (0.6) 1.8 (0.4) 1.5 (0.4) 93.3 (0.9) 4.1 (0.9) 2.5 (0.5)

bo
th

in
te

rc
ep

t 100 18.8 (13.7) 76.0 (16.6) 5.2 (7.2) 18.7 (15.2) 78.1 (16.7) 3.2 (4.1)

500 35.4 (25.2) 58.7 (27.2) 6.0 (8.5) 30.6 (18.5) 65.1 (20.5) 4.3 (3.9)

1000 70.5 (22.4) 24.3 (23.4) 5.2 (1.9) 46.4 (12.1) 48.2 (13.9) 5.4 (2.4)

bo
th

slo
pe

100 16.2 (13.2) 79.2 (16.8) 4.5 (6.0) 23.4 (22.3) 74.9 (23.6) 1.6 (2.3)

500 69.7 (18.1) 24.7 (19.4) 5.6 (2.0) 69.8 (13.4) 25.2 (14.4) 5.0 (1.4)

1000 80.5 (3.0) 12.0 (3.3) 7.4 (1.2) 81.1 (2.2) 11.9 (2.1) 7.0 (0.8)

bo
th

bo
th

100 16.7 (14.5) 80.3 (17.3) 3.0 (5.5) 19.4 (19.8) 79.7 (20.7) 0.9 (1.4)

500 43.6 (30.5) 53.3 (32.3) 3.0 (2.8) 66.3 (19.6) 29.1 (21.1) 4.5 (1.9)

1000 80.3 (10.5) 13.5 (11.1) 6.2 (1.2) 80.9 (3.3) 12.1 (3.5) 7.0 (1.0)

1 Structure of random effects.
2 Difference among groups.
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6. MCMC estimation of the
GLMM-based model
This chapter is dedicated solely to the GLMM-based model (Sections 2.4.2, 3.3.2,
4.4.2) and derivation of all necessary quantities to construct an MCMC algo-
rithm. Similarly as for the threshold concept model we aim for the Gibbs sam-
pler, although this time we are unable to classify some full-conditionals into the
well-known distributional families or to directly sample from the full-conditional
distribution. Hence, we start with the achievable full-conditionals and list down
the parameters that require the help of Metropolis proposal step. Such a com-
bination of the two sampling techniques is known as Metropolis within Gibbs
sampler.

Then, we focus on the proposal distribution itself. The algorithm benefits
from generating proposals from distribution of similar characteristics, therefore,
the goal is to find a reasonable approximation of the target distribution. We
describe, how Taylor expansion and Newton–Raphson method (Algorithm 6) are
used in this context.

This model is more advanced than the previous one, mainly in the use of sparse
finite mixture methodology (Malsiner-Walli et al., 2016; Frühwirth-Schnatter and
Malsiner-Walli, 2019) to estimate the number of clusters. Simply put, the num-
ber of non-empty clusters decreases from its maximal amount Gmax during the
sampling until a reasonable count is achieved. Group-specific parameters are sam-
pled for all Gmax clusters nonetheless. For that reason, the sampling algorithm
has to be adjusted and accompanied with a post-sampling procedure to process
the sampled data and deal with potential label switching problems.

Finally, a simulation study is performed to test the ability to estimate the
model parameters as well as the true number of underlying clusters.

6.1 Full-conditional distributions
The implementation for this model is more advanced in yet another aspect. The
data usually lack some outcome values, therefore, one datarow may be completely
ignored even if just a single value is missing since the implementation of the
threshold concept model works under the complete-case analysis. Here, we are
able to bypass this problem with the use of BDA similarly as with any other
unobserved model quantity, see Section 4.1.

Let us divide Y =
{︂
Yobs,Ymis

}︂
, where Yobs is the observed part of the out-

comes, while Ymis are the unobserved (missing) outcome values. At some places,
this division will be crucial, however, when not, the traditional symbol Y is
used, e.g. full-conditional distributions of other parameters are derived given
the whole Y. By BDA, the set of latent quantities is then extended to L =
{Ymis, Ui, bi; i = 1, . . . , n}. For row (i, j), at least some outcome value has to be
observed to contribute to the model. Otherwise, only the predictive distribution
of Yi,j given covariates Ci,j is explored.

For this model, the set of all randomized elements (including the latent vari-
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ables) of the model Ψ consists of w,β, τ , c,Σ,Ymis,U , b,Q and e0. Again, to
derive full-conditional distributions for all parameters ψ ∈ Ψ, we have to view
the right hand side of (4.20) as a function of parameter ψ which can be decom-
posed into the following products:

p
(︂
w, β, τ , c, Σ, Ymis, U , b, Q, e0

⃓⃓⃓
Yobs; C

)︂
∝

∝
n∏︂
i=1

⎡⎣∏︂
r∈R

ni∏︂
j=1

pt(r)
(︂
Y r
i,j

⃓⃓⃓
bri ,β

(Ui)
r , τ (Ui)

r , c(Ui)
r ; Ci,j

)︂
· p
(︂
bi
⃓⃓⃓
Σ(Ui)

)︂
· p(Ui|w)

⎤⎦ ·
· p(w|e0)p(e0|ae, be)p(c|α)p(β | τ ,β0,D)p(τ |aτ , bτ )p(Σ|Q, ν0)p(Q|DQ, ν1), (6.1)

where H0 denotes all fixed hyperparameters of prior distributions. Similarly as
before, the latent quantities remain present compared to (3.5) instead of being
integrated, which considerably simplifies the evaluation. Combining the arrows
in Figure 4.4 coming in and out of the node of interest ψ ∈ Ψ, we can determine
the factors needed for the full-conditional distribution of ψ.

The following is a list of parameters with the full-conditional distribution of
the same shape as in Section 5.1:

• the cluster allocation probabilities w, equation (5.2),

• precision parameters τ (g)
r for numeric outcomes r ∈ RNum, equation (5.6),

• fixed effects β(g)
r corresponding to numeric outcomes r ∈ RNum, equa-

tion (5.7),

• prior scale matrix Q for matrices Σ, equation (5.8),

• covariance matrices Σ(g) for random effects∗, equation (5.9).

Missing outcome values

Missing outcome values Ymis have the most trivial full-conditional distribution
among all ψ ∈ Ψ. One simply has to sample an unobserved Y r

i,j according to
the corresponding GLMM using the group-specific parameters of cluster g = Ui.
This is possible since the random effects bri are known. In general, the following
notation could be used

Y r
i,j

⃓⃓⃓
Ui = g, bri ,β

(g)
r , τ (g)

r , c(g)
r ; Ci,j ∼ pt(r)

(︂
Y r
i,j

⃓⃓⃓
bri ,β

(g)
r , τ (g)

r , c(g)
r ; Ci,j

)︂
, (6.2)

where the usual symbol for pdf pt(r) now stands for the assumed model for outcome
of type t(r), which is given by either (2.1), (2.7), (2.9), (2.12) or (2.14).

Full-conditional clustering probabilities

We can derive the full-conditional clustering probabilities easily the same way as
in Section 5.1.2. Simply take all factors where any group-specific parameter is

∗Even though the random effects bi now contain effects for many more types of outcomes,
compare Sections 2.4.1 and 2.4.2, they can still be vectorized into bi and the derivation proceeds
in the same manner as in Section 5.1.8.
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chosen according to Ui and its prior distribution:

p (Ui |Y,Ψ−Ui
,H0; C ) ∝

∝
∏︂
r∈R

ni∏︂
j=1

pt(r)
(︂
Y r
i,j

⃓⃓⃓
bri ,β

(Ui)
r , τ (Ui)

r , c(Ui)
r ; Ci,j

)︂
· p
(︂
bi
⃓⃓⃓
Σ(Ui)

)︂
· p (Ui|w) .

The full-conditional probability of belonging to cluster g = 1, . . . , G could be
expressed in detail using (2.24) as

P [Ui = g |Yi, bi,w,β, τ , c,Σ; Ci ] ∝ wg ·
⃓⃓⃓
Σ−(g)

⃓⃓⃓ 1
2 exp

{︃
−1

2b
⊤
i Σ−(g)bi

}︃
·

·
∏︂

r∈RNum

(︂
τ (g)
r

)︂ni
2 exp

⎧⎨⎩−τ (g)
r

2

ni∑︂
j=1

(︂
Y r
i,j − η

r,(g)
i,j

)︂2
⎫⎬⎭ ·

·
∏︂

r∈RPoi

exp
⎧⎨⎩

ni∑︂
j=1

(︂
Y r
i,jη

r,(g)
i,j − exp

{︂
η
r,(g)
i,j

}︂)︂⎫⎬⎭ ·
·
∏︂

r∈RBin

ni∏︂
j=1

[︂
logit−1

(︂
η
r,(g)
i,j

)︂]︂Y r
i,j
[︂
1− logit−1

(︂
η
r,(g)
i,j

)︂]︂1−Y r
i,j ·

·
∏︂

r∈ROrd

ni∏︂
j=1

[︂
logit−1

(︂
η
r,(g)
i,j − c

(g)
r,Y r

i,j−1

)︂
− logit−1

(︂
η
r,(g)
i,j − c

(g)
r,Y r

i,j

)︂]︂
·

·
∏︂

r∈RCat

ni∏︂
j=1

exp
{︂
η
r,(g)
i,j,Y r

i,j

}︂
1 +

Kr−1∑︁
k=1

exp{ηr,(g)
i,j,k }

, (6.3)

where ηr,(g)
i,j =

(︂
xri,j

)︂⊤
β(g)
r +

(︂
zri,j

)︂⊤
bri is the linear predictor of j-th observation

of outcome r ∈ R \ RCat of unit i when belonging to the group g. We denote
the predictor for categorical outcomes in similar fashion but with an additional
subscript k denoting the level to which the predictor corresponds.

From the computational point of view, it is more convenient to calculate the
logarithm of the right hand side up to any multiplicative constant. In this case,
we arrive to

log P [Ui = g |Yi, bi,w,β, τ , c,Σ; Ci ] = const. + logwg + 1
2 log

⃓⃓⃓
Σ−(g)

⃓⃓⃓
−

− 1
2b

⊤
i Σ−(g)bi +

∑︂
r∈RNum

ni
2 log

(︂
τ (g)
r

)︂
− τ (g)

r

2

ni∑︂
j=1

(︂
Y r
i,j − η

r,(g)
i,j

)︂2
+

+
∑︂

r∈RPoi

ni∑︂
j=1

(︂
Y r
i,jη

r,(g)
i,j − exp

{︂
η
r,(g)
i,j

}︂)︂
+

+
∑︂

r∈RBin

ni∑︂
j=1

[︂
Y r
i,jη

r,(g)
i,j − log

(︂
1 + exp

{︂
η
r,(g)
i,j

}︂)︂]︂
+

+
∑︂

r∈ROrd

ni∑︂
j=1

log
[︂
logit−1

(︂
η
r,(g)
i,j − c

(g)
r,Y r

i,j−1

)︂
− logit−1

(︂
η
r,(g)
i,j − c

(g)
r,Y r

i,j

)︂]︂
+

+
∑︂

r∈RCat

ni∑︂
j=1

[︄
η
r,(g)
i,j,Y r

i,j
− log

(︄
1 +

Kr−1∑︂
k=1

exp
{︂
η
r,(g)
i,j,k

}︂)︄]︄
. (6.4)

Having computed the right hand side we proceed as described in Section 5.1.2.
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Hyperparameter e0

Mixture weights w are apriori given by the Dirichlet prior (4.11) controlled by
hyperparameter e0. Its value is regulated by Gamma prior (4.12) with carefully
chosen shape ae and rate be. The full-conditional pdf is then proportional to

p (e0|w, ae, be) ∝ p(w|e0)p(e0|ae, be) =∝ Γ(Ge0)
ΓG(e0)

G∏︂
g=1

we0−1
g · eae−1

0 exp{−bee0}.

(6.5)
Here we do not immediately recognize the full-conditional distribution, hence,
a Metropolis proposal needs to be employed.

We follow the steps of Frühwirth-Schnatter and Malsiner-Walli (2019) and
sample e0 from partly marginalized full-conditional distribution instead. In par-
ticular, we integrate the parameter w out of the conditioning, hence, we sample
e0 from p(e0|U) ∝ p(e0)p(U | e0) instead of p(e0|w).

Parameter w has to be integrated out of the combination of (3.1) and (4.11)

p(U , w | e0 ) = Γ(Ge0)
ΓG(e0)

·
G∏︂
g=1

wn
(g)(U)+e0−1
g .

The so called stick-breaking representation

w1 = v1, v1 = w1,

w2 = v2(1− v1), v2 = w2/(1− w1),
w3 = v3(1− v2)(1− v1), v3 = w3/(1− w1 − w2),

... = ... ... = ...

wg = vg

g−1∏︂
j=1

(1− vj), vg = wg
/︂⎛⎝1−

g−1∑︂
j=1

wg

⎞⎠
(6.6)

and vG = 1 transforms the integration with respect to (wrt) w into

∫︂ G∏︂
g=1

wn
(g)(U)+e0−1
g dw =

∫︂ G−1∏︂
g=1

vn
(g)(U)+e0−1

g (1− vg)
(G−g)e0+

G∑︁
g′=g+1

n(g′)(U)−1
dv,

which can be decomposed into G − 1 integrals wrt independent vg ∈ (0, 1). We
immediately recognize the shape of Beta distributions

Beta
⎛⎝n(g)(U ) + e0, (G− g)e0 +

G∑︂
g′=g+1

n(g′)(U)
⎞⎠ ,

hence, the integral corresponds to product of beta functions. After evaluation
and simplification we arrive to

p(U | e0 ) = Γ(Ge0)
Γ(Ge0 + n)

∏︂
g:n(g)(U)>0

Γ(n(g)(U) + e0)
Γ(e0)

. (6.7)

Combining (6.7) with pdf (4.12) of prior for e0 we obtain

p(e0|U) ∝ eae−1
0 exp{−bee0} ·

Γ(Ge0)
Γ(Ge0 + n)

∏︂
g:n(g)(U)>0

Γ(n(g)(U) + e0)
Γ(e0)

. (6.8)
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6.2 Metropolis proposal steps
Within the MCMC estimation procedure, we also need to sample from full-
conditional (or partly marginalized) distributions of parameters which do not
fall into well-known distributional families. This complicates the sampling.

In the following we assume that we work with a parameter ω ∈ Rκ from which
we want to sample with respect to a distribution given by a pdf proportional to
a twice differentiable function p(ω) > 0,∀ω ∈ Rκ. This differentiability property
is also transferred to the corresponding log-pdf ℓ(ω) = log p(ω) that can be
arbitrarily shifted by a constant.

Given a previous value ωm we want to find a suitable proposal ωm+1 for
the next value of the parameter ω. We adopt a random walk approach with
independent steps sampled from a centred multivariate normal distribution with
variance matrix Ω, i.e. ωm+1 ∼ Nκ (ωm, Ω). The proposal ωm+1 is then accepted
with probability

α
(︂
ωm+1,ωm

)︂
= min

{︄
1, p (ωm+1)

p (ωm)

}︄

=

⎧⎪⎨⎪⎩
exp

{︂
ℓ
(︂
ωm+1

)︂
− ℓ (ωm)

}︂
, if ℓ

(︂
ωm+1

)︂
< ℓ (ωm) ,

1, if ℓ
(︂
ωm+1

)︂
≥ ℓ (ωm) .

The suitable choice of the variance matrix Ω is crucial as a poor choice results in
an inappropriate exploration of the posterior.

Using the Taylor expansion at ˆ︁ω maximising the (log-)pdf, thus satisfying
∂
∂ω
ℓ ( ˆ︁ω) = 0, we obtain the following approximation

ℓ (ω) ≈ const.− 1
2 (ω − ˆ︁ω)⊤

[︄
− ∂2ℓ(ω)
∂ω∂ω⊤

⃓⃓⃓⃓
⃓
ω=ˆ︁ω

]︄
(ω − ˆ︁ω) .

Hence, we want to sample from the pdf which locally (around ˆ︁ω) resembles the

pdf of Nκ

⎛⎝ˆ︁ω, [︄− ∂2ℓ(ω)
∂ω∂ω⊤

⃓⃓⃓⃓
⃓
ω=ˆ︁ω

]︄−1
⎞⎠. Hence, we use the variance matrix Ω =

cω ·
[︄
− ∂2ℓ(ω)
∂ω∂ω⊤

⃓⃓⃓⃓
⃓
ω=ˆ︁ω

]︄−1

for the multivariate normal distribution to sample the

increment when proposing a new value of ω. The multiplicative constant cω
(close to 1) is used to shrink or stretch the size of the increment steps.

This matrix does not have to be updated in every iteration m. Especially,
once the limiting distribution of the chain is reached, Ω should be more or less
the same and hence should be updated rarely to save computational time. We
also propose several transitions between ωm+1 and ωm to speed up convergence
to the limiting distribution and to make better use of the costly computation of
Ω.

To find ˆ︁ω maximising ℓ(ω), we employ the Newton–Raphson method. Start-
ing from some initial value ω0, e.g. the maximum from the previous step, we
iteratively solve ⎡⎣− ∂2ℓ(ω)

∂ω∂ω⊤

⃓⃓⃓⃓
⃓
ω=ωk

⎤⎦ s = ∂ℓ(ω)
∂ω

⃓⃓⃓⃓
⃓
ω=ωk

.
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to find the direction in which to move from current position ωk, see Algorithm 6 in
Section 7.4 for more details. Hence, evaluation of the gradient and Hess matrix
has to be feasible. This algorithm primarily yields the basis for the precision
matrix Ω−1 of the incremental distribution.

In the following subsections we explore in detail the peculiarities of individ-
ual parameters that require a Metropolis proposal approach for sampling from
the full-conditional distribution. These include: the log-precision e⋆0 := log e0 (to
sample e0 > 0), the fixed effects β(g)

r of non-numeric outcomes r ∈ R\RNum, the
random effects bi specific to each unit i and the transformed ordered intercepts
a(g)
r = a

(︂
c(g)
r

)︂
(to sample the ordered intercepts c(g)

r and the corresponding prob-
abilities π(g)

r ). We derive in detail the corresponding ℓ functions together with
gradient and negative Hess matrix, which are required by Algorithm 6 to find
a suitable proposal matrix Ω for each of these parameters.

6.2.1 Hyperparameter e0

Since e0 is positive, we will perform the proposal on a log-scale by defining a new
parameter e⋆0 = log e0 ∈ R, which by the transformation theorem yields

p(e⋆0 |U ) ∝ exp{e⋆0ae − be exp{e⋆0}}·

· Γ(G exp{e⋆0})
Γ(G exp{e⋆0}+ n)

∏︂
g:n(g)(U)>0

Γ(n(g)(U) + exp{e⋆0})
Γ(exp{e⋆0})

. (6.9)

Transforming (6.9) into log-scale yields

ℓ(e⋆0 |U ) = const. + e⋆0ae − be exp{e⋆0}+ log Γ(G exp{e⋆0})
− log Γ(G exp{e⋆0}+ n) +

∑︂
{g:n(g)(U)>0}

log Γ(n(g)(U) + exp{e⋆0})

−G+ log Γ(exp{e⋆0}). (6.10)

The first and second derivative of (6.10) can be obtained with the use of the
derivatives of the log-gamma function log Γ, namely the digamma function ψ and
the trigamma function ψ1, both implemented in base . They take the following
form:

[⋆] = −be +Gψ(G exp{e⋆0})−Gψ(G exp{e⋆0}+ n)
+

∑︂
{g:n(g)(U)>0}

ψ(n(g)(U) + exp{e⋆0})−G+ψ(exp{e⋆0}),

[∗] = G2ψ1(G exp{e⋆0})−G2ψ1(G exp{e⋆0}+ n)
+

∑︂
{g:n(g)(U)>0}

ψ1(n(g)(U) + exp{e⋆0})−G+ψ1(exp{e⋆0}),

∂ℓ(e⋆0|U)
∂e⋆0

= ae + exp{e⋆0} · [⋆],

∂2ℓ(e⋆0|U)
∂ (e⋆0)

2 = exp{e⋆0} · ([⋆] + exp{e⋆0}[∗]) .

The new e⋆0 is proposed using this combination of a Newton–Raphson step and
a random walk and if accepted, we transform it back to obtain the new e0 =
exp{e⋆0}.
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6.2.2 Fixed effects βr for non-numeric outcomes

Table 6.1 contains an overview of the contributions of a single outcome obser-
vation to the log-likelihood depending on the type of the outcome. Moreover,
derivatives with respect to the predictor η (or η) can be further used for deter-
mining the derivatives with respect to fixed and random effects. In this section,
which is devoted to the fixed effects, we will use that

∂η

∂β
=
∂
(︂
x⊤β + ηR

)︂
∂β

= x,

where ηR denotes the random-effects part of the linear predictor.
In the following, we present the log-posteriors and their derivatives for the full-

conditional distribution of the fixed effects β(g)
r within the group g for a count,

binary, ordinal and general categorical outcome. We kindly remind the notation
η
r,(g)
i,j for the predictor formed by β(g)

r . We start with a count outcome, r ∈ RPoi:

ℓ
(︂
β(g)
r

⃓⃓⃓
Y r, U , br; C

)︂
=

∑︂
{i:Ui=g}

ni∑︂
j=1

[︂
Y r
i,jη

r,(g)
i,j − exp

{︂
η
r,(g)
i,j

}︂]︂

− 1
2
(︂
β(g)
r − β0,r

)︂⊤
D−1
r

(︂
β(g)
r − β0,r

)︂
,

∂ℓ
(︂
β(g)
r

⃓⃓⃓
Y r, U , br; C

)︂
∂β

(g)
r

=
∑︂

{i:Ui=g}

ni∑︂
j=1

[︂
Y r
i,j − exp

{︂
η
r,(g)
i,j

}︂]︂
xri,j

− D−1
r

(︂
β(g)
r − β0,r

)︂
,

−
∂2ℓ

(︂
β(g)
r

⃓⃓⃓
Y r, U , br; C

)︂
∂β

(g)
r ∂

(︂
β

(g)
r

)︂⊤ =
∑︂

{i:Ui=g}

ni∑︂
j=1

exp
{︂
η
r,(g)
i,j

}︂
xri,j

(︂
xri,j

)︂⊤
+ D−1

r .

We continue with a binary outcome, r ∈ RBin:

ℓ
(︂
β(g)
r

⃓⃓⃓
Y r, U , br; C

)︂
=

∑︂
{i:Ui=g}

ni∑︂
j=1

[︂
Y r
i,jη

r,(g)
i,j − log

(︂
1 + exp

{︂
η
r,(g)
i,j

}︂)︂]︂

− 1
2
(︂
β(g)
r − β0,r

)︂⊤
D−1
r

(︂
β(g)
r − β0,r

)︂
,

∂ℓ
(︂
β(g)
r

⃓⃓⃓
Y r, U , br; C

)︂
∂β

(g)
r

=
∑︂

{i:Ui=g}

ni∑︂
j=1

[︂
Y r
i,j − logit−1

(︂
η
r,(g)
i,j

)︂]︂
xri,j

− D−1
r

(︂
β(g)
r − β0,r

)︂
,

−
∂2ℓ

(︂
β(g)
r

⃓⃓⃓
Y r, U , br; C

)︂
∂β

(g)
r ∂

(︂
β

(g)
r

)︂⊤ =
∑︂

{i:Ui=g}

ni∑︂
j=1

[︂
logit−1

(︂
η
r,(g)
i,j

)︂
·

(︂
1− logit−1

(︂
η
r,(g)
i,j

)︂)︂]︂
xri,j

(︂
xri,j

)︂⊤
+ D−1

r .

Next, the log-posterior and its derivatives of the full-conditional distribution
of the fixed effects β(g)

r within the group g for an ordinal outcome r ∈ ROrd are
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Table
6.1:

T
he

contribution
ofa

single
observation

to
the

log-likelihood
as

wellas
the

first
and

second
derivative

depending
on

the
type

of
the

outcom
e.

Form
ulas

for
ordinaland

categoricaloutcom
es

assum
e
Y

=
k
∈
{0,...,K

−
1}.

G
eneralcategoricaloutcom

es
have

a
m

ultivariate
predictor

η,the
other

types
work

w
ith

a
univariate

predictor
η.

N
otation

follow
s

the
one

used
in

Section
2.2.

Type
Equation

ℓ(Y
|η
,τ,c)

∂∂
η
ℓ(Y
|η
,τ,c)

−
∂

2

∂
η
∂
η

⊤
ℓ(Y
|η
,τ,c)

Num
(2.3)

−
12 log(2π)+

12 log
τ
−

τ2 (Y
−
η) 2

τ(Y
−
η)

τ

Poi
(2.8)

Y
η
−

exp{
η}

Y
−

exp{η}
exp{η}

Bin
(2.10)

Y
η
−

log(1
+

exp{η})
Y
−

logit −
1(η)

logit −
1(η) (︂1

−
logit −

1(η) )︂
O

rd
(2.13)

log(q
Y )=

log(p
Y

−
1 −

p
Y )

1
−
p
Y

−
1 −

p
Y

p
Y

−
1 (1
−
p
Y

−
1 )+

p
Y

(1
−
p
Y )

Cat
(2.15)

η
Y
−

log (︄1
+

K
−

1
∑︁k=

1 exp{
η
k } )︄

e
Y
−

softm
ax(η):

if0
<
Y
≤
K
−

1
−

softm
ax(η):

if
Y

=
0

diag{softm
ax(η)}−

softm
ax(η)softm

ax(η) ⊤
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derived:

ℓ
(︂
β(g)
r

⃓⃓⃓
Y r, U , br, c(g)

r ; C
)︂

=
∑︂

{i:Ui=g}

ni∑︂
j=1

log
(︂
pY r

i,j−1 − pY r
i,j

)︂

− 1
2
(︂
β(g)
r − β0,r

)︂⊤
D−1
r

(︂
β(g)
r − β0,r

)︂
,

∂ℓ
(︂
β(g)
r

⃓⃓⃓
Y r, U , br, c(g)

r ; C
)︂

∂β
(g)
r

=
∑︂

{i:Ui=g}

ni∑︂
j=1

[︂
1− pY r

i,j−1 − pY r
i,j

]︂
xri,j

− D−1
r

(︂
β(g)
r − β0,r

)︂
,

−
∂2ℓ

(︂
β(g)
r

⃓⃓⃓
Y r, U , br, c(g)

r ; C
)︂

∂β
(g)
r ∂

(︂
β

(g)
r

)︂⊤ =
∑︂

{i:Ui=g}

ni∑︂
j=1

[︂
pY r

i,j−1
(︂
1− pY r

i,j−1
)︂

+pY r
i,j

(︂
1− pY r

i,j

)︂]︂
xri,j

(︂
xri,j

)︂⊤
+ D−1

r .

Analogously, we present these quantities for a general categorical outcome
r ∈ RCat. For a general categorical outcome, we do not only have different β(g)

r,k

for each of the clusters but also for different outcome levels k = 1, . . . , Kr − 1.
Remind that for k = 0 we suppose β(g)

r,0 = 0 by default. Notice that β(g)
r,k with an

arbitrary k affects the likelihood regardless of the outcome value. For that reason,
full-conditional distributions of β(g)

r,k are not independent between different values
of k. Hence, we stack them into a long vector β(g)

r =
(︂
β

(g)
r,1 , . . . , β

(g)
r,Kr−1

)︂⊤
that

will be sampled at once. The log-posterior of the full-conditional distribution of
β(g)
r takes the form of:

ℓ
(︂
β(g)
r

⃓⃓⃓
Y r, U , br; C

)︂
=

∑︂
{i:Ui=g}

ni∑︂
j=1

log
[︄
η
r,(g)
i,j,Y r

i,j
− log

(︄
1 +

Kr−1∑︂
k=1

exp
{︂
η
r,(g)
i,j,k

}︂)︄]︄

− 1
2
(︂
β(g)
r − β0,r

)︂⊤
D−1
r

(︂
β(g)
r − β0,r

)︂
.

The first derivative consists of the following subvectors:

∂ℓ
(︂
β(g)
r

⃓⃓⃓
Y r, U , br; C

)︂
∂β

(g)
r,k

=

∑︂
{i:Ui=g}

ni∑︂
j=1

[︂
1(Y r

i,j=k) − softmaxk
(︂
η
r,(g)
i,j

)︂]︂
xri,j − D−1

r,k

(︂
β

(g)
r,k − β0,r,k

)︂
.

The negative Hessian matrix consists of the following blocks:

−
∂2ℓ

(︂
β(g)
r

⃓⃓⃓
Y r, U , br; C

)︂
∂β

(g)
r,k∂

(︂
β

(g)
r,k

)︂⊤ =
∑︂

{i:Ui=g}

ni∑︂
j=1

[︂
softmaxk

(︂
η
r,(g)
i,j

)︂
(︂
1− softmaxk

(︂
η
r,(g)
i,j

)︂)︂]︂
xri,j

(︂
xri,j

)︂⊤
+ D−1

r ,

89



−
∂2ℓ

(︂
β(g)
r

⃓⃓⃓
Y r, U , br; C

)︂
∂β

(g)
r,k1∂

(︂
β

(g)
r,k2

)︂⊤ =

∑︂
{i:Ui=g}

ni∑︂
j=1

[︂
− softmaxk1

(︂
η
r,(g)
i,j

)︂
softmaxk2

(︂
η
r,(g)
i,j

)︂]︂
xri,j

(︂
xri,j

)︂⊤
,

where k, k1, k2 ∈ {1, . . . , Kr − 1} and k1 ̸= k2.
If any part of the fixed effects βr is common to all clusters, we need to consider

the common part and the group-specific part separately. For the group-specific
part the formulae are the same. Only the vector is of lower dimension because
xri,j then only contains the subset of regressors for the group-specific regression
coefficients. The effects common to all clusters are sampled separately condition-
ally on the group-specific part, which is not part of the derivative of the predictor
η in the same way as the random-effect contribution ηR is not included. The
resulting formulae are analogous, however, they use all the units i = 1, . . . , n.
This feature of our implementation is discussed in more detail in Section 7.1.

6.2.3 Random effects bi

Random effects bi are unit-specific, i.e. there is one set of random effects for each
unit i = 1, . . . , n. Hence, only observations belonging to unit i appear in the
full-conditional distribution of bi. Each bi consists of subvectors bri for each of the
outcomes r ∈ R which are modelled independently of each other given the random
effects. The dependencies among the random effects bi arise from assuming that
they follow a multivariate normal distribution with general covariance matrix Σ(g)

(possibly) specific to cluster g across units. Putting all of this together similarly
as in (6.4) yields the following log-posterior of the full-conditional distribution of
bi:

ℓ
(︂
bi
⃓⃓⃓
Yi, Ui = g,β(g), τ (g), c(g),Σ(g); Ci

)︂
= const. − 1

2b
⊤
i Σ−(g)bi−

−
∑︂

r∈RNum

τ (g)
r

2

ni∑︂
j=1

(︂
Y r
i,j − η

r,(g)
i,j

)︂2
+

+
∑︂

r∈RPoi

ni∑︂
j=1

(︂
Y r
i,jη

r,(g)
i,j − exp

{︂
η
r,(g)
i,j

}︂)︂
+

+
∑︂

r∈RBin

ni∑︂
j=1

[︂
Y r
i,jη

r,(g)
i,j − log

(︂
1 + exp

{︂
η
r,(g)
i,j

}︂)︂]︂
+

+
∑︂

r∈ROrd

ni∑︂
j=1

log
(︂
pY r

i,j−1 − pY r
i,j

)︂
+

+
∑︂

r∈RCat

ni∑︂
j=1

log
[︄
η
r,(g)
i,j,Y r

i,j
− log

(︄
1 +

Kr−1∑︂
k=1

exp
{︂
η
r,(g)
i,j,k

}︂)︄]︄
. (6.11)

Subvectors bri (or bri,k if random effects are specific to each level of general cate-
gorical outcome r) hide within the predictor ηr,(g)

i,j (or ηr,(g)
i,j,k for general categorical

outcome r). We use the following derivatives

∂η

∂bri
=
∂
(︂
ηF + z⊤bri

)︂
∂bri

= z
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in combination with the derivatives in Table 6.1 to compute the derivatives of
full-conditional log-posterior of bi with respect to subvectors bri . The explicit
form of the formulae below also depends on the possibility to simplify the model
by bri,1 = · · · = bri,Kr−1 discussed in Section 2.2.4. In case that bri are common to
all (except the zero level) categorical outcome values k = 1, . . . , Kr− 1, the first
derivative ∂ℓ (bi| · · · ) /∂bi takes the following block form:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
τ (g)
r

ni∑︁
j=1

(︂
Y r
i,j − η

r,(g)
i,j

)︂
zri,j, r ∈ RNum

...
ni∑︁
j=1

(︂
Y r
i,j − exp

{︂
η
r,(g)
i,j

}︂)︂
r ∈ RPoi

...
ni∑︁
j=1

[︂
Y r
i,j − logit−1

(︂
η
r,(g)
i,j

)︂]︂
zri,j, r ∈ RBin

...
ni∑︁
j=1

[︂
1− pY r

i,j−1 − pY r
i,j

]︂
zri,j, r ∈ ROrd

...

ni∑︁
j=1

⎡⎢⎢⎢⎣1(Y r
i,j ̸=0) −

Kr−1∑︁
k=1

exp
{︂
η
r,(g)
i,j,k

}︂
1 +

Kr−1∑︁
k=1

exp
{︂
η
r,(g)
i,j,k

}︂
⎤⎥⎥⎥⎦ zri,j, r ∈ RCat

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−Σ−(g)bi.

However, if the random effects bri,k are specific to each level k = 1, . . . , Kr−1 (the
first is always zero for identifiability purposes) of the general categorical outcome
we would replace the row corresponding to an outcome r ∈ RCat with

(︄
∂ℓ (bi| · · · )
∂bri,k

)︄
k=1, ...,Kr−1

=
⎛⎝ ni∑︂
j=1

[︂
1(Y r

i,j=k) − softmaxk
(︂
η
r,(g)
i,j

)︂]︂
zri,j

⎞⎠
k=1, ...,Kr−1

+ · · · ,

where · · · on the right hand side stands for corresponding elements of −Σ−(g)bi
coming from the prior distribution.

With regard to the Hessian matrix, it is again better to deal with the two
contributions separately. The basis of the negative Hessian matrix is formed by
Σ−(g). The other contribution comes in the form of a block-diagonal matrix, where
the diagonal structure comes from the fact that bri among different outcomes
r ∈ R do not interact within the model specification, i.e.

∂2ℓ (bi| · · · )
∂br1

i ∂ (br2
i )⊤ = OdR

r1 ×dR
r2

for r1, r2 ∈ R : r1 ̸= r2.
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Below is the list of diagonal blocks except for the contribution of Σ−(g):

τ (g)
r

ni∑︂
j=1
zri,j

(︂
zri,j

)︂⊤
, r ∈ RNum,

ni∑︂
j=1

exp
{︂
η
r,(g)
i,j

}︂
zri,j

(︂
zri,j

)︂⊤
, r ∈ RPoi,

ni∑︂
j=1

[︂
logit−1

(︂
η
r,(g)
i,j

)︂ (︂
1− logit−1

(︂
η
r,(g)
i,j

)︂)︂]︂
zri,j

(︂
zri,j

)︂⊤
, r ∈ RBin,

ni∑︂
j=1

[︂
pY r

i,j−1
(︂
1− pY r

i,j−1
)︂

+ pY r
i,j

(︂
1− pY r

i,j

)︂]︂
zri,j

(︂
zri,j

)︂⊤
, r ∈ ROrd,

ni∑︂
j=1

[︂
softmaxk

(︂
η
r,(g)
i,j

)︂ (︂
1− softmaxk

(︂
η
r,(g)
i,j

)︂)︂]︂
zri,j

(︂
zri,j

)︂⊤
, r ∈ RCat,

ni∑︂
j=1

[︂
− softmaxk1

(︂
η
r,(g)
i,j

)︂
softmaxk2

(︂
η
r,(g)
i,j

)︂]︂
zri,j

(︂
zri,j

)︂⊤
, r ∈ RCat,

where k, k1, k2 ∈ {1, . . . , Kr − 1} and k1 ̸= k2. In the case when bri is common
to all levels k = 1, . . . , Kr − 1 of a general categorical outcome r ∈ RCat, the
corresponding block is equal to

ni∑︂
j=1

Kr−1∑︁
k=1

exp
{︂
η
r,(g)
i,j,k

}︂
(︄

1 +
Kr−1∑︁
k=1

exp
{︂
η
r,(g)
i,j,k

}︂)︄2 z
r
i,j

(︂
zri,j

)︂⊤
.

6.2.4 Ordered intercepts c for ordinal outcomes
The prior distribution for parameter c is specified through the probabilities π
by (4.14). Specifying the prior for the probabilities allows for a more straight-
forward inclusion of prior knowledge. Both c and π cannot directly be used in
combination with a Metropolis proposal without taking into account the limita-
tion of the corresponding parametric space. Hence, we express π in terms of the
new parameter a in the following way:

πk = softmaxk(a) := eak

K−1∑︁
k′=0

eak′

with ak = log(πk/π0), k = 1, . . . , K − 1 and a0 = 0, thus implying

ck ≡ ck(a) = log 1 + ea1 + · · ·+ eak

eak+1 + · · ·+ eaK−1
, k = 0, . . . , K − 2,

ak ≡ ak(c) = log logit−1 (ck)− logit−1 (ck−1)
logit−1 (c0)

, k = 1, . . . , K − 1.

Note that we dropped the ordinal outcome index r ∈ ROrd and the superscript
(g) for the g-th cluster for simplicity. The prior (4.15) over π translates to the
following form in terms of a:

p (a) ∝
K−1∏︂
k=0

(πk)αk−1 ·
K−1∏︂
k=0

eak

K∑︁
k′=1

eak′

=
K−1∏︂
k=0

(softmaxk(a))αk .
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The logarithm of this can be easily differentiated:

log p (a) =
K−1∑︂
k=0

αkak − (α0 + · · ·+ αK−1) log
(︄

1 +
K−1∑︂
k=1

exp{ak}
)︄
,

∂ log p (a)
∂a

= α− (α0 + · · ·+ αK−1) softmax(a),

−∂
2 log p (a)
∂a∂a⊤ = (α0 + · · ·+ αK−1)(︂

diag{softmax(a)} − softmax(a) softmax(a)⊤
)︂
.

The parameter vector a = (a1, . . . , aK−1)⊤ ∈ RK−1 is not restricted. Hence,
we can propose a new value for a using a usual Metropolis proposal step and
obtain c or π using the backward transformation described above. The log-
posterior of the full-conditional distribution of a(g)

r takes the following form:

ℓ
(︂
a(g)
r

⃓⃓⃓
Y r, U , br, β(g)

r ; Cr
)︂

= const. + log p
(︂
a(g)
r

)︂
+

+
∑︂

{i:Ui=g}

ni∑︂
j=1

log
[︃

logit−1
(︂
η
r,(g)
i,j − cY r

i,j−1
(︂
a(g)
r

)︂)︂
⏞ ⏟⏟ ⏞

pY r
i,j

−1

(︂
a

(g)
r

)︂ − logit−1
(︂
η
r,(g)
i,j − cY r

i,j

(︂
a(g)
r

)︂)︂
⏞ ⏟⏟ ⏞

pY r
i,j

(︂
a

(g)
r

)︂
]︃
,

where we use the notation from Section 2.2.3 enriched by highlighted dependence
on a(g)

r . Focusing on outcome r ∈ ROrd and group g, we strip away the nuisance
indices to obtain the expression

ℓ (a | · · · ) = const. + log p (a) +
∑︂

{i:Ui=g}

ni∑︂
j=1

K−1∑︂
k=0

1(Yi,j=k)·

log
⎡⎣ logit−1

(︃
ηi,j − log 1 + ea1 + · · ·+ eak−1

eak + · · ·+ eaK−1

)︃
⏞ ⏟⏟ ⏞

pk−1

−

− logit−1
(︃
ηi,j − log 1 + ea1 + · · ·+ eak

eak+1 + · · ·+ eaK−1

)︃
⏞ ⏟⏟ ⏞

pk

⎤⎦.
Before we obtain its derivatives, we first present the derivatives of the proba-

bilities pk and qk = pk−1−pk (remember also 1 = p−1 > p0 > p1 > · · · > pK−1 = 0)
with respect to al:

∂pk1

∂ck2

= ∂ logit−1(η − ck1)
∂ck2

=
{︄
−pk(1− pk), if k = k1 = k2 = 0, . . . , K − 2,

0, otherwise,

∂ck
∂al

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

eal

1 + ea1 + · · ·+ eak
, if 1 ≤ l ≤ k ≤ K − 2,

−eal

eak+1 + · · ·+ eaK−1
, if 0 ≤ k < l ≤ K − 1,

0, otherwise,
∂ log(pk−1 − pk)

∂al
= − 1

pk−1 − pk

[︄
pk−1(1− pk−1)

∂ck−1

∂al
− pk(1− pk)

∂ck
∂al

]︄
,

93



for k = 0, . . . , K − 2, and l = 1, . . . , K − 1.
Finally, we can evaluate the gradient of the log-posterior of the full-conditional

distribution of the parameter a(g)
r by

∂ℓ (a | · · · )
∂a

= ∂ log p (a)
∂a

−

∑︂
{i:Ui=g}

ni∑︂
j=1

K−1∑︂
k=0

1(Yi,j=k)

pk−1(1− pk−1)
∂ck−1

∂a
− pk(1− pk)

∂ck
∂a

pk−1 − pk

for a specific choice of ordinal outcome r ∈ ROrd and group g.
Next, we determine the second derivatives of ck with respect to al1 and al2 for

1 ≤ l1 ≤ l2 ≤ K − 1

∂2ck
∂al1∂al2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ck
∂al

(︄
1− ∂ck

∂al

)︄
if 1 ≤ l = l1 = l2 ≤ k ≤ K − 2,

∂ck
∂al

(︄
1 + ∂ck

∂al

)︄
if 0 ≤ k < l = l1 = l2 ≤ K − 1,

− ∂ck
∂al1

∂ck
∂al2

if 1 ≤ l1 < l2 ≤ k ≤ K − 2,

− ∂ck
∂al1

∂ck
∂al2

if 0 ≤ k < l1 < l2 ≤ K − 1,

0 otherwise.

Now we can proceed with the second derivatives of individual model contributions
for k = 0, . . . , K − 1 and l1, l2 = 1, . . . , K − 1.

−∂
2 log(pk−1 − pk)

∂al1∂al2
= ∂2ck−1

∂al1∂al2

pk−1(1− pk−1)
pk−1 − pk

−

− ∂2ck
∂al1∂al2

pk(1− pk)
pk−1 − pk

+

+ ∂ck−1

∂al1

∂ck−1

∂al2

pk−1(1− pk−1)[p2
k−1 + pk(1− 2pk−1)]

(pk−1 − pk)2 −

− ∂ck−1

∂al1

∂ck
∂al2

pk−1(1− pk−1)pk(1− pk)
(pk−1 − pk)2 +

+ ∂ck
∂al1

∂ck
∂al2

pk(1− pk)[p2
k + pk−1(1− 2pk)]

(pk−1 − pk)2 −

− ∂ck
∂al1

∂ck−1

∂al2

pk−1(1− pk−1)pk(1− pk)
(pk−1 − pk)2 .

Finally, we can express the negative Hessian matrix of the log-posterior of the
full-conditional distribution of the parameter a(g)

r in the following way:

−∂
2ℓ (a | · · · )
∂a∂a⊤ = −∂

2 log p (a)
∂a∂a⊤ −

∑︂
{i:Ui=g}

ni∑︂
j=1

K−1∑︂
k=0

1(Yi,j=k)
∂2 log(pk−1 − pk)

∂a∂a⊤

for a specific choice of ordinal outcome r ∈ ROrd and group g.
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6.3 Metropolis within Gibbs sampling

As declared above, we aim to estimate the posterior p
(︂
Ψ
⃓⃓⃓
Yobs; C

)︂
of the GLMM-

based model by Gibbs sampling where some of the steps have to be replaced by
a Metropolis proposal step. We have already derived the needed full-conditional
distributions (Sections 5.1 and 6.1) and explained how new values for the rest of
the parameters will be proposed for acceptance (Section 6.2). All these steps are
combined into Algorithm 2.

Similarly as for Algorithm 1, we have to set the length of the burn-in period
B, the length of the chain M , thinning (to reduce autocorrelation), number of
chains to be sampled. Then, alongside the fixed hyperparameter values H0 there
is a large number of setting or tuning parameters. Namely,

• whether also random effects for general categorical outcomes r ∈ RCat

should be level-specific or not (discussed in Sections 2.2.4 and 6.2.3),

• how often should be the proposal distribution updated,

• how many proposals should be performed in one step,

• tolerance and maximal number of iterations for Newton-Raphson method,

• multiplicative constants cω for ω ∈
{︂
e⋆0,β

(g)
r , bi,a

(g)
r

}︂
to control the size of

incremental steps of Metropolis proposals.

Regarding the frequency of proposals, each proposed parameter should have its
own counter since the last update of the proposal distribution which should be
compared to the tuned frequency prior the update. Exceptionally, the update
of the proposal distribution can be performed sooner, e.g. when unit i changes
the assigned cluster and, consequently, the full-conditional distribution of bi is
significantly changed, which requires an appropriate reaction from the proposal
distribution.

Important role in this model is played by the sparse finite mixture framework
by Malsiner-Walli et al. (2016) which is used to estimate the number of underlying
components by the number G+ of non-empty components and inducing a prior
heavily favouring sparse partitions. First, the maximal number Gmax of mixture
components has to be set. Then, each group-specific parameter requires mutu-
ally different values for each cluster. For that reason, we again generate initial
partition by assigning cluster labels to all units uniformly.

Analogously to Algorithm 1, we set the initial values of unknown parame-
ters according to estimates coming from univariate models ignoring the random
effects. Parameters for numeric, count and binary outcomes are initialized by
the estimates coming from the standard glm function in base (R Core Team,
2022). Ordinal logistic regression is estimated via polr from MASS (Venables and
Ripley, 2002) where zeta coincides with our c(g)

r . Multinomial logistic regression
for general categorical outcomes is performed by multinom from nnet (Venables
and Ripley, 2002). Missing values Ymis and Σ do not have to be initialized since
their value is not needed in any sampling step above within the for cycle of Al-
gorithm 2. This time the random effects bi are rather sampled from the normal
distribution than estimated by appropriate mixed-models.
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Algorithm 2 Metropolis within Gibbs sampling for the GLMM-based model
Input: Data Y of longitudinal profiles of n units and covariates C.
Set B, M and other tuning parameters.
Choose the maximal number of clusters Gmax and fix the hyperparameters H0.
Declare or find initial values Ψ0 in this order:

• divide n units randomly into Gmax clusters by U0
i ∼ Unif {1, . . . , Gmax};

• e0
0 := ae/be;

• estimate β(g),0
r , τ (g),0

r and c(g),0
r using linear regression, Poisson log-linear

model, logistic regression, ordinal regression and multinomial logistic regression
ignoring any potential random effects and using available data within cluster g;

• randomly generate b0
i,j from N (0, σ2) with σ2 > 0 low, e.g. σ2 = 10−4;

• randomly generate Σ0 as diagonal matrices with Gamma-distributed di-
agonal elements (with large variance);

• estimate Q0 by inverting the mean of all Σ(g),0 divided by ν0.

Metropolis within Gibbs sampling Always use the very last known values
of other parameters, i.e. either from Ψm−1 or Ψm:
for m in 1 : (B +M) do

if Y r
i,j is missing then
• Y r,m

i,j

⃓⃓⃓
Ui = g, bri ,β

(g)
r , τ (g)

r , c(g)
r ; Ci,j

(6.2)∼ pt(r)
(︂
Y r
i,j

⃓⃓⃓
bri ,β

(g)
r , τ (g)

r , c(g)
r ; Ci,j

)︂
;

end if
• β(g),m

r

⃓⃓⃓
Y r,U , br, τ (g)

r ,β0,r,Dr; C
(5.7)∼

NdF
r

(︄ ˜︁β(g)
r ,

1
τ

(g)
r

[︃(︂
Xr

Ng(U)

)︂⊤
Xr

Ng(U) + D−1
r

]︃−1
)︄

for r ∈ RNum;

• τ (g),m
r

⃓⃓⃓
Y r,U , br,β(g)

r ,β0,r,Dr, aτ , bτ ; C
(5.6)∼ Γ

(︂˜︁a(g)
τ,r ,

˜︁b(g)
τ,r

)︂
for r ∈ RNum;

• update proposal distribution (Alg. 6) for β(g)
r , r ∈ R\RNum according to

Sect. 6.2.2;
• propose and accept/deny β(g),m

r , r ∈ R \ RNum according to Sect. 6.2;
• update proposal distribution (Alg. 6) for a(g)

r , r ∈ ROrd according to
Sect. 6.2.4;

• propose and accept/deny a(g),m
r , r ∈ ROrd according to Sect. 6.2;

• transform a(g),m
r , r ∈ ROrd into c(g),m

r = c
(︂
a(g),m
r

)︂
;

• Σ−(g),m
⃓⃓⃓
U , b,Q, ν0

(5.9)∼ WdR

(︂ ˜︁Q(g), n(g)(U) + ν0
)︂
;

• (Qm)−1
⃓⃓⃓
Σ, ν0, ν1,DQ

(5.8)∼ WdR

⎛⎝[︄Gmax∑︁
g=1

Σ−(g) + D−1
Q

]︄−1

, Gmaxν0 + ν1

⎞⎠;

• update proposal distribution (Alg. 6) for bi according to Sect. 6.2.3;
• propose and accept/deny bmi according to Sect. 6.2;

• wm |U , e0
(5.2)∼ DirGmax (n(U) + e01);

• Um
i ∼ P [Ui = g |Yi, bi,w,β, τ , c,Σ; Ci ]

(6.3)= · · · ;
• update proposal distribution (Alg. 6) for e⋆0 according to Sect. 6.2.1;
• propose and accept/deny e⋆,m0 according to Sect. 6.2;
• transform e⋆,m0 into em0 = exp{e⋆,m0 }.

end for
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The order of parameters sampled within Algorithm 2 is somewhat changed
compared to Algorithm 1, the structure of the algorithm is inspired by Frühwirth-
Schnatter and Malsiner-Walli (2019). However, the Metropolis within Gibbs sam-
pler would work under any order. The only benefit one could get from a specific
order is smoother transition from the initial values to the first sampled state.
Gibbs sampler could be even improved by arbitrarily permuting the order of
parameters for each m.

Now consider the group-specific parameters, e.g. β(g)
r , τ (g)

r , a(g)
r , Σ(g). They

require only data from units currently in the group g, which means that whenever
the cluster is empty (Ng(U) = ∅), the full-conditional distribution consists only
of the assumed prior. We still use Metropolis proposal steps in such situations,
although the new value could be sampled from the prior directly. Since the prior
distribution serves as the only source of information for the empty clusters, its
strength is very important with respect to the sparse finite mixture modelling as
it regulates the willingness of becoming en empty cluster. Informative prior with
low variance results in high penalization, which shrinks the estimates towards
the prior mean. Then, it allows only strong signals from the data to be detected,
hence, negligible signals are overlooked and sparsity is achieved. However, in
applications one has to balance out the level of regularization with respect to the
sample size to not to overshrink.

Algorithm 3 Post-processing the output of MCMC under sparse finite mixture
Input: Sampled Markov chain {Ψ1, . . . ,ΨM} using Algorithm 2.
for m in 1 : M do

• nmg := n(g)(Um) =
n∑︁
i=1

1(Um
i =g);

• Gm
+ := Gmax −

Gmax∑︁
g=1

1(nm
g =0).

end for

• Estimate the number of non-empty clusters by

ˆ︁G+ = arg max
g=1, ..., G

M∑︂
m=1

1(Gm
+ =g).

• Create a subset of posterior draws m = 1, . . . , M such that Gm
+ = ˆ︁G+,

denote the number of such draws by ˆ︂M .
• Apply k-means clustering (Algorithm 7) with ˆ︁G+ to dataset (of length ˆ︁G+ ·ˆ︂M) consisting of draws of cluster-specific parameters within θ that correspond
to non-empty clusters stacked under each other.
• Take all ˆ︁G+ obtained classification indices for m-th draw and check whether
it results in a permutation of {1, . . . , ˆ︁G+}.
• Count the number Mρ of draws that do not lead to a permutation. If it is
large, avoid any inference that is sensitive to label switching.
• For all remaining ˆ︂M − Mρ MCMC draws, obtain a unique labelling by
reordering each of the draws by the corresponding permutation.
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When the sparsity is achieved, there is still a question of the final infer-
ence. Especially, estimation of the number of clusters and inference regard-
ing the cluster-specific parameters has to be performed with caution since the
number of non-empty clusters may differ among different draws from the pos-
terior. For each draw m, the cluster indicators Um induce cluster occupation
numbers nm = (nm1 , . . . , nmG )⊤ and a specific number of non-empty components
Gm

+ = G−
G∑︁
g=1

1(nm
g =0).

We estimate the number of data clusters as suggested by Malsiner-Walli et al.
(2016). They use the mode ˆ︁G+ of the posterior of the number of filled components
as an estimator for the number of clusters in the data:

ˆ︁G+ = arg max
g∈{1, ..., G}

M∑︂
m=1

1(Gm
+ =g). (6.12)

Then, for the subsequent inference only those MCMC draws are considered where
the number of filled components coincides exactly with the mode ˆ︁G+. The MCMC
draws where a different number of components is filled are discarded and omitted
from the further analysis, see Algorithm 3 for details.

Moreover, before group-specific inference can be performed based on the
MCMC samples, one potentially needs to resolve label switching, see Section 4.3.
Since the posterior is multi-modal with modes corresponding to all parameter-
isations obtained by permuting the labels of unique components, the compo-
nent labels may be switched across different draws of the MCMC sampler and
a unique labelling needs to be obtained to determine an identified model where
group-specific inference is possible. We suggest to use the procedure proposed
in Frühwirth-Schnatter (2011) and Malsiner-Walli et al. (2016) to resolve label-
switching with the later describing a method applicable when pursuing the sparse
finite mixture approach. The steps are also covered by Algorithm 3.

In our simulation study and the applications, we observed that the number
of filled components usually stabilises during MCMC sampling at a specific num-
ber, usually representing the lower bound of data clusters required to provide an
adequate fit for the data. Initialising using a partition with all components being
filled, we noted that during the first iterations of the MCMC algorithm super-
fluous components are emptied and only the necessary number of components
required to represent the group structure in the data set remains filled. Monitor-
ing thus the number of filled components serves as a means to assess convergence
of the MCMC chain and thus decide on a suitable number of burn-in iterations
to discard.

We also noted that label switching did not occur during MCMC sampling af-
ter the burn-in samples are omitted in our simulation study and the applications.
Using a multivariate regression model with repeated measurements for units and
avoiding redundant mixture components induces rather crisp classifying proba-
bilities. They induce well separated modes and prevent the sampler also to move
between these modes. Hence, for these analyses there was no need to apply a pro-
cedure for resolving label switching and assigning suitable labels to components
such that they correspond to an identified model.
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6.4 Simulation study
We performed a simulation study to demonstrate the performance of the GLMM-
based model under various settings. We were particularly interested in assessing
how the structure of the sampled data as well as the data generating process
affects

1) the ability to estimate the number of data clusters,

2) the clustering performance measured by the misclassification rates,

3) the accuracy of the model parameter estimates.

Simulation design

A wide range of parameters are selected to specify the simulation study. Some
parameters vary across the settings to study their impact on performance, while
others are kept fixed. In particular, the sample size is varied with values n ∈
{100, 250, 500, 1000} and the number of true data clusters G ∈ {2, 3}. Regarding
the panel structure, we use a rather challenging setting of only ni = 4 observations
per unit in order to mimic the panel structure of the EU-SILC dataset.

For each data set we generate one outcome per type – numeric Y N, binary
Y B, ordinal Y O with KO = 5 levels and general categorical Y C with KC = 4
levels. Unfortunately, the implementation of the method did not yet include
the possibility for a count-type outcome by the time the simulation study was
performed. Hence, count outcome is not considered, which will also be the case
in Chapter 8 where the EU-SILC dataset will be analysed. With respect to the
random-effects part, we only consider a random intercept term for each type of
outcome bi = (bN

i , b
B
i , b

O
i , b

C
i )⊤ ∼ N4 (0, Σ) and assume that the covariance matrix

Σ of the random effects is the same across clusters and may be decomposed into
standard deviations and correlation matrix such that

Σ = S

⎛⎜⎜⎜⎜⎜⎝
1 −0.5 −0.5 −0.4
−0.5 1 0.3 0.4
−0.5 0.3 1 0.2
−0.4 0.4 0.2 1

⎞⎟⎟⎟⎟⎟⎠S.

with S = diag{0.5, 0.5, 0.5, 0.5}. A common random-effects structure is then also
used when fitting the model.

The fixed-effects part of the predictor consists of an intercept term and one
other covariate x ∈ (0, 1). This covariate represents time and is sampled in such
a way that the values are close to each other for the same unit. In particular,
we use the simulation parameter ξ = 1

3 to define the length of the observational
window for one unit, i.e. for each unit only a third of the total length of the
interval is admissible for values of x. To obtain the x values for each unit i,
first, the centre of the interval is sampled by xc,i ∼ ξ

2 · Unif
{︂
1, . . . , 2

ξ
− 1

}︂
and

then ni values for unit i are sampled from Unif
(︂
xc,i − ξ

2 , xc,i + ξ
2

)︂
and ordered.

Marginally, for ξ < 1 the distribution of x is not Unif (0, 1) since the intervals at
the boundary

(︂
0, ξ2

)︂
and

(︂
1− ξ

2 , 1
)︂

have lower probability. Note that this setting

99



is selected to resemble the structure of the rotational panel in the EU-SILC data
set.

We explore several different ways how the time covariate affects the outcome:

a) no effect of time at all (no),

b) a slope term common to all clusters (parallel),

c) different intercepts and slopes in each cluster resulting in a crossing (cross).

We follow the same scheme when specifying the models for estimation, considering
models where no time effect is included, a common slope for time and a group-
specific slope for time. Examples of the predictors simulated for the different
time parametrizations and number of clusters G are illustrated in Figure 6.1.

The implementation of the MCMC sampler for the GLMM-based model allows
us to choose which of the fixed effects βr,j will be group-specific and which not, see
Section 7.1 for more details. The intercept term is always (both when generating
the data set and when estimating) considered to be group-specific. This ensures
some differences between clusters. While presence and group-specificity for the
effect of time will create different scenarios under which the model is estimated.

The numerical outcome is obtained by adding an error term with group-
specific standard deviation, {0.5, 0.8} for G = 2 and {0.5, 0.75, 1} for G = 3, to
the linear predictor. For the ordinal outcome, group-specific equidistant ordered
intercepts are used (i.e. typically whole numbers shifted by a certain constant
amount to have reasonable frequencies of outcome values in each cluster). Three
different specifications of intercepts (e.g. using an exchange of monotonicity type)
are required to obtain the predictors for the categorical outcome with KC = 4
levels.
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Figure 6.1: Lines connecting predictors of n = 250 individual units generated
from G clusters for different types of time effects. The maximum length of the
observational window is ξ = 1

3 .
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We generate 200 data sets for each considered data setting. For Bayesian in-
ference, the prior distributions together with their parameter values are specified
as outlined in Section 4.2. For estimating the number of data clusters or assessing
the clustering abilities, we initialise the Markov chain with the maximal number
of components Gmax = 10 considered for the mixture model. A burn-in period of
B = 500 samples was enough to then use the next M = 10 000 sampled parameter
and latent variable values to approximate their posterior distributions. Subjects
were classified using the sampled indicators Ui, leaving units unclassified when
less than 60% of these indicators assigned the unit to the same cluster.

Estimating number of data clusters and classifying units

In the following we assess the ability of the proposed approach to estimate the
number of data clusters and evaluate the classification performance, focusing
in particular on the benefit incurred through joint modelling of the outcome
variables. We consider the cross parametrization of time with ξ = 1

3 for data
generation and also use a suitable model specification for estimation to be able to
capture these effects. We estimate the model for each type of outcome separately
as well as all four outcomes of different types jointly.

Results indicate that the performance regarding the estimation of the number
of data clusters G+ is rather comparable regardless of the type of outcome used
and also when all outcomes are modelled jointly, see Figure 6.2 depicting his-
tograms of the generated number of non-empty clusters Gm

+ . Sample size had an
effect with only one or two data clusters being selected for n = 100 regardless of
if the true number of data clusters is 2 or 3. For G = 2 and n = 250 the number
of data clusters was in general already correctly identified, whereas n = 500 was
required for G = 3 to achieve a good performance.

G+ posterior
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Figure 6.2: Histograms of the draws Gm
+ across all 200 replications of the dataset

of sample size n under cross effect of time. G is the true number of underlying
clusters.
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Once the number of clusters has been estimated by ˆ︁G+ (6.12), we proceed
with classification according to point estimates of ui,g based on sampled allocation
indicators Um

i by the rule (P1) with threshold 0.6, see Classification probabilities
subsection of Section 4.3. Figure 6.3 provides an overview on the proportions
of correctly classified, unclassified and misclassified units when using either only
a single outcome variable or using all four outcome variables jointly. Similarly as
in Figure 6.2, the results for the single outcome variables are shown in the rows
labelled “Num” for numeric outcome, “Bin” for binary outcome, “Ord” for ordinal
outcome and “Cat” for general categorical outcome. The results when modelling
all four outcomes jointly are shown on top in the row labelled “All”. In addition
the sample size n and the true number of data clusters are also varied.

Figure 6.3 clearly shows a general pattern of an increase in sample size n im-
proving the classification performance. This certainly also is partly due to the
underestimation of G+ for n ∈ {100, 250}. In case the number of data clusters
is underestimated, a high misclassification rate naturally results. Also the classi-
fication performance is in general better if the true number of data clusters is 2
instead of 3.

Figure 6.3 also highlights the impact of the type of outcome on the classifi-
cation performance. If only a single outcome is considered, the numeric outcome
performs best, while the single categorical outcome classifies barely better than
a completely random classification. Modelling all types together clearly out-
performs the single models and achieves the highest correct classification rates
indicating the advantage of using a modelling approach which allows to jointly
model the data.
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Figure 6.3: Proportions of correctly classified (green), unclassified (grey) and
misclassified (red) units in dependence of the types of outcomes used, sample size
n and the true number of data clusters G. The number of data clusters used for
classification are estimated based on ˆ︁G+, the most frequent number of non-empty
components during MCMC sampling with Gmax = 10.
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Estimating model parameters

Regarding the accuracy of the model parameter estimates, we focus on the esti-
mation of the fixed effects β. In many applications these parameters will be of
core interest for characterising the clusters identified and interpreting the effects.
We vary the data generation setting with respect to sample size, true number of
data clusters and effect of the time covariate and generate 200 data sets for each
data setting.

A joint model for all outcome variables is estimated assuming that the true
number of data clusters is known. This is achieved by setting Gmax = G and
using ae = 4 and be = 1 for the hyperparameters of the prior on the component
weights to avoid sparse cluster solutions. Using this specification ensures that we
estimate exactly G data clusters for each of the 200 simulated data sets. Posterior
medians of the estimated group-specific intercepts are used to match the labelling
of the estimates for the simulated data sets to the labels of the clusters used in
data generation.

Figure 6.4 shows the results obtained for the slope estimates of the numeric
and the binary outcome. The numeric outcome are much more informative, which
results in remarkably thinner credible intervals. On the other hand, the binary
outcome variable corresponds to the least informative outcome type and, thus,
these results demonstrate that accurate estimation is achieved even under the
most challenging conditions when the sample size is sufficiently large. Estimating
a model with a common slope for all clusters leads to the correct estimation of
the value 0 (in case no effect of time is present) or 2 (in case the clusters share
the same slope term) for a sample size n of 250 or higher for G = 2 and 500 or
higher for G = 3. However, an average effect is estimated when clusters indeed
have a different slope. On the other hand, when estimating the model with
different slopes across clusters, the group-specific estimates also coincide with
the true common value (0 when no effect and 2 in the parallel lines), although
a small shrinkage towards zero is visible for a low sample size n. Such a shrinkage
behaviour can also be discerned in case the data generating process has group-
specific slopes. However, this effect vanishes with increasing sample size and
excellent results are obtained for n = 1000.
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(a) The slope terms for the numeric outcome.
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(b) The slope terms for the binary outcome.

Figure 6.4: Medians, 2.5 and 97.5% quantiles of estimated posterior medians of
the slope term for the Num and Bin outcome variable across 200 simulated data
sets. Model estimation is performed assuming that the number of data clusters
G is known. Different settings are considered for the effect of the time covariate
x for data generation (rows) and model specification (columns) and ξ = 1

3 is used
for data generation. The dashed lines indicate the true values. These are grey in
case the effects are identical across clusters and in colour otherwise.
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7. Implementation and numerical
approximation methods
Theoretical proposition of a statistical model in itself is not enough for a practical
application. The software implementation is an integral part of the development
of a new methodology. Therefore, we dedicate this chapter to briefly introduce
some of the key aspects of our implementation within the free statistical software

(R Core Team, 2022). Although there is a lot of potentially interesting details
regarding the implementation, we restrict ourselves here to those interesting even
from the theoretical point of view.

Since the focus of this chapter is more practical, we also deal with several
technical issues that were intentionally postponed. In Chapter 2 we built the
model around latent quantities that have to be integrated out to obtain the
marginal pdfs (2.17) for the modelled outcomes. These are required for the pos-
terior classification probabilities (3.4) viewed as a parametric function of model
parameters θ. However, the necessary integrations have not been performed yet.
The reason is simple, the exact evaluation of the integrals is practically impossible
and only approximative methods have to be employed. We present algorithmic
solutions to these problems including some of the well-known and broadly used
algorithms (methods) that have been mentioned throughout the thesis for their
diverse applications.

7.1 Implementation
First drafts of our implementation for the threshold concept were sketched solely
within the free statistical software (R Core Team, 2022) with the use of basic
functions available. We allowed the user to choose which unknown model pa-
rameters should be group-specific and which should be common to all clusters.
This required derivation of the full-conditional distributions under all possible
combinations by slightly adjusting the formulas in Section 5.1. The implementa-
tion was in the end very flexible, compatible with coda package (Plummer et al.,
2006) to obtain an MCMC summary and provided with several helpful plotting
tools, see Figure 4.2 for an exemplary monitoring output.

However, the sampling algorithm was painfully slow for datasets of large
sample size n. Hence, we tried to utilize some traditional software for MCMC,
such as BUGS (Lunn et al., 2000), JAGS (Plummer, 2003; Denwood, 2016) or
RStan (Stan Development Team, 2020). However, despite their user-friendly
environment and a successful implementation for datasets of medium size, the
waiting time for the EU-SILC data analysis was still unbearably slow (even a day
of non-stop computation was not enough). Moreover, these samplers may use
some advanced sampling techniques compared to the ones proposed. For exam-
ple, we suspect them from stacking all the random effects (across all units) into
one vector and then computing derivatives wrt this extremely long vector instead
of updating them independently for all units.

Since we wanted to be sure how exactly the sampler proposes new values, we
returned back to our implementation in and tried to identify the bottle neck.
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We noticed that the for cycle for sampling new draws from the full-conditional
distributions (see Algorithms 1 and 2) could be substantially improved by replac-
ing it with analogous implementation using the language. Therefore, we kept
the main structure of already implemented solution in , which includes the
data preparation phase and initialization steps, and then replaced the for cycle
by calling a function which would do exactly the same steps but much faster.
The tricky part was the transfer of all needed data, parameters, dimensions to
and then back from the environment since their size changes with many spec-
ifications the analyst may require such as different formulas for the predictors or
decision about cluster-specificity of the model parameters.

In the end, such a combination of and indeed proved to be about 80×
more efficient than our original pure solution. Pleased by this success, we im-
plemented the calculation of classification probabilities and the model deviance
in a similar fashion; data preparation and processing in but the crucial calcu-
lations with the use of functions.

For those interested in applications, the implementations for both the thresh-
old concept model and the GLMM-based model are provided via GitHub at
https://github.com/vavrajan/ together with a tutorial on how to use them.

During the implementation of the second model we were able to improve
the functionality in many aspects. We incorporated the sparse finite mixture
approach which has to account for empty clusters and final post-processing of the
data (see Section 6.3 for details). Moreover, the missing outcome values could
be considered as additional model parameters to be estimated, which prevents
the waste of incomplete data. But the most significant improvement was wrt the
construction of the predictor.

Predictor construction for the GLMM-based model

The way one specifies the formula for the fixed and the random effects is rather
primitive for the initial threshold concept model. The analyst has to supply the
dataset of covariates and the set of column names to form the predictor, which
means the regression matrix has to be created manually ahead. For the imple-
mentation of the GLMM-based model we made the interface more user friendly
by utilizing the traditional specification in by formula.

However, during the initial analysis of the EU-SILC dataset we observed that
many regressors potentially effect the outcomes, but only few of them were rel-
evant with respect to the clustering. Hence, there was an idea to separate the
fixed part of the predictor ηF into a part common to all clusters ηF (still denoted
by the same symbol) and a group-specific part ηG. With the presence of a count
outcome and a possibility for having an offset ηO (by default ηO = 0) the final
structure of the predictor is supposed to be of the form:

η
r,(g)
i,j = ηO,r

i,j + ηF,r
i,j + η

G,r,(g)
i,j + ηR,r

i,j =

= log ori,j⏞ ⏟⏟ ⏞
offset

+
(︂
xF,r
i,j

)︂⊤
βF
r⏞ ⏟⏟ ⏞

common fixed effects

+
(︂
xG,r
i,j

)︂⊤
β(g)
r⏞ ⏟⏟ ⏞

group-specific effects

+
(︂
zri,j
)︂⊤
bri⏞ ⏟⏟ ⏞

random effects

, (7.1)

where the covariates xF,r
i,j and xG,r

i,j are mutually exclusive (in case of collision
the group-specific part has a preference). Effects βF

r ∈ RdF
r are common to
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all units i = 1, . . . , n, while β(g)
r ∈ RdG

r are specific only for units within clus-
ter g, i.e. i ∈ Ng(U). Note that these effects are allowed to be empty (either
dF
r = 0 or dG

r = 0). We also have to adjust the overall notation for the ef-
fects: βF =

{︂
βF
r , r ∈ R

}︂
, β(g) =

{︂
β(g)
r , r ∈ R

}︂
, βr =

{︂
β(g)
r , g = 1, . . . , G

}︂
and

β =
{︂
β(g)
r , r ∈ R, g = 1, . . . , G

}︂
. The notation for general categorical outcome

would require an additional subscript k for the corresponding outcome level,
which is going to be ignored from now on to focus on the main goal.

From the theoretical point of view, we have to derive full-conditional distribu-
tions for βF

r and β(g)
r separately. In Section 5.1.6, we derived the full-conditional

distribution when the underlying distribution of the outcomes is assumed to be
normal, r ∈ RNum. In this case the prior for the effects has to be adjusted
as well depending on the group-specificity of the precision to not to violate the
hierarchical structure of the model:

• τ (g)
r is group-specific, then only p

(︂
β(g)
r

⃓⃓⃓
τ (g)
r

)︂
p
(︂
τ (g)
r

)︂
is assumed while τ -free

prior p
(︂
βF
r

⃓⃓⃓
βF

0,r,Dr,F
)︂

was used similarly as for non-numeric outcomes,

• τr is common to all clusters, then priors for both βF
r and β(g)

r can be tied
with τr,

see Section 4.2 to refresh the details of the prior setting.
Another key moment for derivation of the full-conditional distributions is when

the shifted outcomes ˜︁Y r
i,j are created. When βF

r is the primary target then

˜︁Y r
i,j := Y r

i,j − η
O,r
i,j − η

G,r,(Ui)
i,j − ηR,r

i,j .

where the group-specific part of the predictor is defined by the cluster g = Ui
unit i currently belongs to. Similarly, the precision τ (Ui)

r (or common τr) is used.
Its full-conditional distribution is then derived from all units i = 1, . . . , n. On
the other hand, when β(g)

r is of the interest then

˜︁Y r
i,j := Y r

i,j − η
O,r
i,j − η

F,r
i,j − η

R,r
i,j

for any group g, however, only units i currently within the cluster g contribute
to the full-conditional distribution of β(g)

r the same way as in Section 5.1.6.
In case of non-numeric outcomes r ∈ R \ RNum, the derivatives of the log-

pdfs ℓ(•| · · · ) of the full-conditional distributions (see Section 6.2.2) have to be
done also separately for βF

r and β(g)
r , but will remain almost the same. The key

difference here are the derivatives of the predictor wrt the effects:

∂η
r,(g)
i,j

∂βF
r

= xF,r
i,j ,

∂η
r,(g)
i,j

∂β
(g′)
r

= 1(g=g′)x
G,r
i,j and

∂η
r,(g)
i,j

∂bri
= zri,j.

From the practical point of view, this division of the predictor into four dis-
joint parts is an opportunity for its efficient evaluation provided that sufficient
memory capacity is available. Each ηr,(g)

i,j can be represented by four memory slots
corresponding to ηO,r

i,j , η
F,r
i,j , η

G,r,(g)
i,j and ηR,r

i,j , where the offset and linear combina-
tion of the covariates with the last known values of βF

r , β(g)
r and bri are stored.

When the overall value of the predictor ηr,(g)
i,j is needed, it suffices to add up these
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four stored numbers. When evaluating ℓ(•| · · · ) and its derivatives, only one of
the memory slots has to be updated (e.g. within the iterative process of Newton–
Raphson method, see Algorithm 6) while the other ones remain intact, beauty of
which comes from the full-conditionality. Therefore, a lot of computational time
that would have been otherwise spent on evaluation of the predictor is saved.

Nevertheless, each time a new value of fixed, group-specific or random effects
is drawn the corresponding memory slots have to be updated immediately af-
terwards. Moreover, there is practically only one slot for the group-specific part
η

G,r,(g)
i,j (not G of them as the notation suggests) which has to be interpreted as

the group-specific part of the predictor for observation j of outcome r of unit i
in its current cluster Ui = g. Meaning that this group-specific slot has to be
updated even after the allocation indicators Ui are sampled; at least those units i
which change their cluster allocation: Um

i ̸= Um−1
i .

To sum it up, Algorithm 2 should be extended by

• initialization of the memory slots of the predictor,

• additional sampling step of the effects common to all clusters βF
r and

• updates of the predictor after sampling each βF
r , β(g)

r , bi and Ui.

PBC910 example

We illustrate the capabilities of our implementation on the PBC910 example used
in Sections 2.4.1, 2.4.2, 3.3.1 and 3.3.2. The fixed part of the predictor consisted
of the spline parametrization of time since the entry and the interaction between
age and gender (2.22). There was also a random intercept term specific to each
patient.

In Section 2.4, only one cluster G = 1 is assumed, hence, it does not matter
whether the effects are considered common to all clusters or group-specific. How-
ever, imagine a situation G > 1 with the requirement that the effects would still
be the same for all patients. In notation one would have to specify:

fixed ∼ age ∗ sex + bs(time, knots, ...), random ∼ 1,
group ∼ −1, offset = 0.

On the other hand, in Section 3.3 all the fixed effects were considered to be
group-specific, which was achieved by

fixed ∼ −1, random ∼ 1,
group ∼ age ∗ sex + bs(time, knots, ...), offset = 0.

We could even leave the fixed formula as it was since when the two terms in
fixed and group coincide, the group-specificity has preference by default.

Suppose we would be interested only in the differences caused by the evolution
in time and not the effects of other covariates. That is,

η = 0⏞⏟⏟⏞
offset

+ βAA+ βMM + βA:MAM⏞ ⏟⏟ ⏞
common fixed part

+

+ β
(g)
0 + β

(g)
1 S1 + β

(g)
2 S2 + β

(g)
3 S3⏞ ⏟⏟ ⏞

group-specific part

+ bi⏞⏟⏟⏞
random intercept

.
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Table 7.1: PBC910 dataset, G = 2. Posterior medians of the GLMM-based model
parameters including 95% equal-tailed credible intervals. Effects of age and sex
are common to both clusters.

Parameter g Numeric outcome Count outcome Binary outcome Ordinal outcome

Log(bilirubin) Platelet count Hepatomegaly Edema

β0
1 1.27 (0.55;1.77) 5.57 (5.46; 5.72) 0.55 (−2.11;2.52) -
2 0.82 (0.10;1.34) 5.56 (5.45; 5.69) −0.45 (−3.04;1.51) -

βA 1=2 −0.14 (−0.24;0.01) 0.00 (−0.03; 0.02) −0.08 (−0.46;0.41) 0.71 (0.22;1.23)
βM 1=2 0.33 (−0.99;1.62) 0.29 (−0.40; 0.92) −0.25 (−2.10;1.61) −1.05 (−2.45;0.35)
βA:M 1=2 0.03 (−0.20;0.27) −0.07 (−0.19; 0.06) 0.32 (−0.10;0.76) 0.01 (−1.13;1.15)

β1
1 −0.10 (−0.28;0.07) −0.33 (−0.36;−0.29) 0.44 (−1.05;1.87) −0.58 (−1.97;0.85)
2 −0.13 (−0.27;0.02) 0.00 (−0.03; 0.03) −0.51 (−1.68;0.64) −0.60 (−2.12;0.93)

β2
1 0.02 (−0.24;0.30) −0.27 (−0.33;−0.21) −0.99 (−3.35;1.47) 1.30 (−0.69;3.38)
2 0.34 (0.11;0.56) 0.12 (0.09; 0.16) 1.30 (−0.44;3.11) 2.12 (−0.30;4.58)

β3
1 0.42 (0.08;0.76) −0.66 (−0.73;−0.58) 3.12 (−0.32;6.51) 1.82 (−0.56;4.26)
2 0.07 (−0.20;0.35) 0.07 (0.02; 0.11) −1.26 (−3.66;0.95) −0.44 (−3.88;2.68)

σ = τ− 1
2

1 0.39 (0.36;0.43) - - -
2 0.37 (0.35;0.40) - - -

c0
1 - - - 2.89 (1.95;3.83)
2 - - - 3.54 (2.54;4.69)

c1
1 - - - 6.39 (5.09;7.78)
2 - - - 7.71 (6.26;9.52)

Then, we would have to set up the formulae in the following way:

fixed ∼ age ∗ sex, random ∼ 1,
group ∼ bs(time, knots, ...), offset = 0.

We will split the fixed effects similarly in the analysis of the EU-SILC dataset in
Chapter 8.

We have reestimated this model under this setting and created Table 7.1
summarizing the posterior of the model parameters. The resulting estimates of
group-specific parameters are somewhat analogous to those in Table 3.2, while the
estimates of effects common to both clusters remind the estimates from Table 2.2.
Moreover, we created Figure 7.1 with analogous plots as in Figure 3.3. We can
clearly see that the evolution in time is different for both clusters, however, the
effects of age and sex are comparable between these two clusters.
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Figure 7.1: PBC910 dataset. GLMM-based model, G = 2. Estimated group-
specific (red (g = 1) and turquoise (g = 2)) spline curves by posterior median.
Effects of age and sex are assumed to be common to both clusters. Proportions
of categorical outcomes with respect to time separately in each cluster.
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7.2 Evaluation of the pdf in the threshold con-
cept model

In Section 2.4.1 we outlined the threshold concept model given by the pdf (2.18).
The mixture of these models (3.5) was created later in Section 3.3.1, where we
noted that if one wishes to evaluate the posterior allocation probability ui,g(θ)
given by (3.6), the integrals in (2.18) have to be evaluated for all G clusters.
Moreover, in Section 4.3 we introduced deviance of the model, which requires
evaluation of the same quantities for all units i within the training dataset.

To be precise, Section 4.3 also introduces randomized hyperparameters H
(only Q for this model) for the prior of the unknown parameters θ, which al-
together creates the posterior (4.19). Neither outcomes nor latent quantities
depend on these randomized hyperparameters, only on θ. Integration of H from
p(θ,H) = p(θ|H)p(H) leads to marginalized prior p(θ) without having any ef-
fect on the rest of the model. Therefore, we can neglect this part of the model
and focus on the integration of other important latent quantities to obtain the
marginal pdf for observed outcomes.

Within this section, we provide a guide on how to perform the integration
in (2.18) with respect to auxiliary latent variables (random effects bi and the
latent numeric outcomes Y⋆,OB

i ) in order to evaluate the classification probabilities
ui,g(θ) and deviance DG(θ;Y, C). To recall (2.18), which consists of (2.19), (2.20)
and (2.21), we reshape it into a pdf for the cluster g:

p
(︂
Yi

⃓⃓⃓
Ui = g,β(g), τ (g),γ,Σ(g); Ci

)︂
=
∫︂
p
(︂
YOB
i

⃓⃓⃓
Y⋆,OB
i ,γ

)︂
⏞ ⏟⏟ ⏞
threshold concept (2.19)

·

·

⎡⎢⎢⎢⎣
∫︂
p
(︂
YN
i

⃓⃓⃓
bN
i ,β

(g), τ (g); Ci
)︂
p
(︂
Y⋆,OB
i

⃓⃓⃓
bOB
i ,β(g); Ci

)︂
⏞ ⏟⏟ ⏞

multivariate LME (2.20)

· p
(︂
bi
⃓⃓⃓
Σ(g)

)︂
⏞ ⏟⏟ ⏞

(2.21)

dbi

⎤⎥⎥⎥⎦ dY⋆,OB
i ,

(7.2)

where we inserted the parameters specific for cluster g.

Integration with respect to random effects bi

Let us first integrate the random effects bi out of (7.2) to obtain the marginal
distribution of numeric variables. In this case, we will avoid integration by re-
alization that under the normality assumption of both numeric outcomes and
random effects the unconditional distribution of the outcomes is also normal.

Let us gather the observed numeric outcomes YN
i and the latent numeric

outcomes Y⋆,OB
i into one vector Yi of length d = ni|R|. Then, Yi given a vector of

all random effects bi follows by our LME assumption (2.1) and (2.5) multivariate
normal distribution:

Yi
⃓⃓⃓
bi, β

(g), τ (g),Σ(g); Ci ∼ Nd

(︂
Xiβ

(g) + Zibi, T(g)
i

)︂
,

where Xi and Zi are block diagonal matrices composed of model matrices of fixed
effects Xr

i and of random effects Zri , respectively. The covariance matrix T(g)
i
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is diagonal due to the independence assumption and contains the correspond-
ing parameters of the residual variability, that is,

(︂
τ (g)
r

)︂−1
for r ∈ RNum and 1

otherwise.
Similarly as in the introduction to Chapter 2, we compute the marginal mean

and variance matrix of Yi unconditioned by the random effects bi:

E
[︂
Yi
⃓⃓⃓
β(g), τ (g),Σ(g); Ci

]︂
= E

(︃
E
[︂
Yi
⃓⃓⃓
bi, . . .

]︂)︃
= Xiβ

(g) + Zi0 = Xiβ
(g) =: µ(g)

i ,

var
[︂
Yi
⃓⃓⃓
β(g), τ (g),Σ(g); Ci

]︂
= E

(︃
var
[︂
Yi
⃓⃓⃓
bi, . . .

]︂)︃
+ var

(︃
E
[︂
Yi
⃓⃓⃓
bi, . . .

]︂)︃
= T(g)

i + Z⊤
i Σ(g)Zi =: V(g)

i .

Due to conjugacy of normal distributions for Yi|bi and bi, the marginal distribu-
tion of Yi has to preserve the normality:

Yi
⃓⃓⃓
β(g), τ (g),Σ(g); Ci ∼ Nd

(︂
µ

(g)
i , V(g)

i

)︂
. (7.3)

This distribution has a general covariance structure, which is a result of modelling
outcomes jointly through random effects (Section 2.4) to capture dependencies
among the longitudinal outcomes. In the following, we will need to divide this
distribution into parts corresponding to numeric and categorical (ordinal and
binary) outcomes, hence, the notation:

µ
(g)
i =

⎛⎝ µ(g)
i,N

µ
(g)
i,OB

⎞⎠ and V(g)
i =

⎛⎝ V(g)
i,N V(g)

i,NOB

V(g)
i,OBN V(g)

i,OB

⎞⎠ .
Integration with respect to latent numeric outcomes Y⋆,OB

i

It remains to perform the following integration:∫︂
p
(︂
YOB
i

⃓⃓⃓
Y⋆,OB
i , γ

)︂
· p
(︂
YN
i ,Y

⋆,OB
i

⃓⃓⃓
β(g), τ (g),Σ(g); Ci

)︂
dY⋆,OB

i ,

which is, in fact, an integration of a multivariate normal density within the bounds
given by the thresholds γ and the observed ordinal and binary outcomes YOB

i .
First, we separate marginal distribution of numeric outcomes YN

i since it can
avoid the integration. However, now after integration of bi the outcomes Y⋆,OB

i

and YN
i are dependent. Hence, the conditional normal distribution of latent

numeric outcomes Y⋆,OB
i given YN

i still awaits the integration:

φ
(︂
YN
i ; µ(g)

i,N,V
(g)
i,N

)︂
⏞ ⏟⏟ ⏞

pdf of vectorized YN
i

·
∫︂
p
(︂
YOB
i

⃓⃓⃓
Y⋆,OB
i , γ

)︂
⏞ ⏟⏟ ⏞

thresholding (2.19)

·φ
(︂
Y⋆,OB
i ; µ(g)

i,OB|N,V
(g)
i,OB|N

)︂
⏞ ⏟⏟ ⏞

pdf of Y⋆,OB
i |YN

i

dY⋆,OB
i ,

where µ(g)
i,OB|N and V(g)

i,OB|N are the conditional mean and the covariance matrix of
Y⋆,OB
i

⃓⃓⃓
YN
i , β

(g), τ (g),Σ(g); Ci and are given by the standard formulae:

µ
(g)
i,OB|N = µ

(g)
i,OB + V(g)

i,OBN

(︂
V(g)
i,N

)︂−1 (︂
YN
i − µ

(g)
i,N

)︂
,

V(g)
i,OB|N = V(g)

i,OB − V(g)
i,OBN

(︂
V(g)
i,N

)︂−1
V(g)
i,NOB.
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It remains to integrate the product of two functions, the first of which only
declares lower and upper integration bounds while the second is the probability
density function of a multivariate normal distribution with the mean η(g)

i,OB|N and
the covariance matrix V(g)

i,OB|N. For each individual categorical outcome r ∈ ROB

and observation j ∈ {1, . . . , ni} the value Y r
i,j = k determines an interval given

by the corresponding pair of γ parameters, see (2.4):

Y r
i,j = k =⇒ Y ⋆,r

i,j ∈
(︂
γrk−1, γ

r
k

]︂
=:

(︂
eri,j, f

r
i,j

]︂
.

If we denote the resulting Cartesian product of these intervals as □
(︂
γ, YOB

i

)︂
=

(ei,fi ] ⊂ RdOB then the remaining integral can be written in the form

Ig
(︂
YOB
i

)︂
:=

∫︂
□(γ,YOB

i )
p
(︂
Y⋆,OB
i

⃓⃓⃓
YN
i ,β

(g), τ (g),Σ(g); Ci
)︂

dY⋆,OB
i =

=
fi∫︂
ei

φ
(︂
y; µ(g)

i,OB|N,V
(g)
i,OB|N

)︂
dy. (7.4)

Finally, after the integrals Ig for all g = 1, . . . , G are computed, the classifi-
cation probabilities can be calculated proportionally:

ui,g (θ) =
wg · φ

(︂
YN
i ; µ(g)

i,N,V
(g)
i,N

)︂
· Ig

(︂
YOB
i

)︂
G∑︁

g′=1
wg′ · φ

(︂
YN
i ; µ(g′)

i,N ,V
(g′)
i,N

)︂
· Ig′

(︂
YOB
i

)︂ . (7.5)

Similarly as for full-conditional distributions, it is computationally more stable
to evaluate the numerators on a log-scale first. Then shift them all by the same
suitable constant, which will result in exponentials of reasonable scale to be com-
pared in the fraction. However, this is not applicable for the contribution of unit i
to the deviance (4.18), which is given directly by the denominator of (7.5). Any
constants lost due to proportionality should be retrieved. If the use of deviance
is to compare two different models, constants that would be common to both
models could be skipped.

The dOB-dimensional integrals (7.4) needed in (7.5) could be directly evaluated
through 2dOB values of cumulative distribution function of multivariate normal
distribution. With dOB = ni|ROB| large, the evaluation becomes very expensive,
hence, a different approximative approach is needed. For that reason, we adopted
an effective algorithm presented by Genz (1992) which is also based on the MCMC
sampling, see Algorithm 4. To obtain Ig, the procedure MultNormProb would
be called for d = dOB, V = V(g)

i,OB|N, e = ei − µ(g)
i,OB|N and f = fi − µ(g)

i,OB|N, where
the underlying distribution is centred to fit the assumption of the procedure. The
implemented function pmvnorm from the package mvtnorm (Genz et al., 2020)
is used in our applications.

Since the approximation of such an integral is needed G-times for each gen-
erated state of the Gibbs sampling, the overall procedure is still considerably
time-consuming.
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Algorithm 4 Approximation of multivariate normal probabilities by Genz (1992)
Used functions:
CholeskySolve(A, b) ▷ returning C from A = CC⊤ and solution to Cx != b
Φ(x) ▷ cumulative distribution function of N (0, 1)
Φ−1(p) ▷ quantile function of N (0, 1)

procedure MultNormProb(V, e,f , ϵ, α,Nmax)
▷ ϵ tolerance for error, α Monte Carlo confidence factor for standard error

(α = 2.5 for 99%), Nmax total amount of iterations allowed for computation

goal: I = P [e < Nd (0, V) ≤ f ] = (2π)
d
2 |V|− 1

2
f∫︁
e

exp
{︂
−1

2y
⊤V−1y

}︂
dy.

C← CholeskySolve(V, ·) ▷ only Cholesky decomposition required

initialize: intsum := 0, N := 0, varsum := 0;
s1 := Φ(e1/c1,1), t1 := Φ(f1/c1,1), p1 := t1 − s1;

repeat
generate w1, . . . , wd−1

iid∼ Unif [0, 1];
for i in 2 : d do

yi−1 := Φ−1 (si−1 + wi−1(ti−1 − di−1));
if ei = −∞ then

si := 0;
else

si := Φ
(︂(︂
ei −

∑︁i−1
j=1 ci,jyj

)︂/︂
ci,i
)︂
;

end if
if fi =∞ then

ti := 1;
else

ti := Φ
(︂(︂
fi −

∑︁i−1
j=1 ci,jyj

)︂/︂
ci,i
)︂
;

end if
pi := (ti − si)pi−1;

end for
intsum := intsum + pd;
varsum := varsum + p2

d;
N ← N + 1;
error := α

√︃
(varsum/N − (intsum/N)2)

/︂
N ; ▷ MC error

until error < ϵ or N = Nmax
return I = intsum/N, error and N .

end procedure

114



7.3 Classification probabilities for the GLMM-
based model

The motivation for calculation of the classification probabilities for the GLMM-
based model is analogous to the one in the previous section.

In Section 2.4.2, we proposed to combine different GLMM by a joint distribu-
tion of random effects bi, which resulted in the pdf (2.24). Later in Section 3.3.2,
we created a mixture of these models (3.7) and gave the formula (3.8) for the pos-
terior classification probability ui,g(θ) involving the integral from (2.24). Adopt-
ing the Bayesian approach we added a prior distribution for θ enriched by the
randomized hyperparameters H = {Q, e0}. Moreover, in Section 6.3 we even con-
sidered that some of the outcomes (Ymis

i ) may not be observed and are treated as
additional latent model parameters by BDA.

These extensions force us to slow down and apply the Bayes’ theorem once
again to obtain the posterior classification probabilities

P
[︂
Ui = g

⃓⃓⃓
Yobs
i ,θ; Ci

]︂
∝ p

(︂
Yobs
i ,θ

⃓⃓⃓
Ui = g; Ci

)︂
P [Ui = g]

∝
∫︂ ∫︂ ∫︂

wgp
(︂
Yobs
i ,Ymis

i , bi,θ,H
⃓⃓⃓
Ui = g; Ci

)︂
dYmis

i dbi dH

∝ wg

∫︂ ∫︂ ∫︂
p
(︂
Yobs
i

⃓⃓⃓
Ui = g, bi,θ; Ci

)︂
p
(︂
Ymis
i

⃓⃓⃓
Ui = g, bi,θ; Ci

)︂
·

· p (bi|Ui = g,θ) p (θ|H) p(H) dYmis
i dbi dH.

The missing outcome values appear only in one of the factors and are independent
of Yobs

i given bi, hence, the integration wrt Ymis
i reduces to 1. Similarly as in the

introduction to the previous section, we notice that integration wrtH only reduces
the prior to p(θ), which does not depend on the fact that Ui = g. Therefore,
it only becomes yet another multiplicative constant common to all clusters to
be hidden within the proportionality sign ∝. Finally, we end up with slightly
modified version of (3.8) which defines the clustering probabilities ui,g(θ):

ui,g(θ) ∝ wg

∫︂ ∏︂
r∈R

ni∏︂
j=1

[︂
pt(r)

(︂
Y r
i,j

⃓⃓⃓
bri ,β

(g)
r , τ (g)

r , c(g)
r ; Ci,j

)︂]︂Ir
i,j · p

(︂
bi
⃓⃓⃓
Σ(g)

)︂
dbi, (7.6)

where only the observed outcome values contribute, which is denoted by indicators
Iri,j = 1(Y r

i,j is observed).
The integral in (7.6) could be fully factored in the fashion of (2.24) where

parameters specific to group g would be used. More importantly, the proportion-
ality (7.6) could be expressed in the following form:

ui,g(θ) ∝ wg
⃓⃓⃓
Σ(g)

⃓⃓⃓− 1
2
∫︂

exp {hg(bi)} dbi, (7.7)

where the function hg is analogous to (6.11), although some summands, such as
log τ , dependent on g are hidden in the additive constant as they were free of bi.
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To be precise, the full expression of hg in this case takes the form of

hg(bi) = −1
2b

⊤
i Σ−(g)bi +

∑︂
r∈RNum

∑︁ni
j=1 I

r
i,j

2 log τ (g)
r −

−
∑︂

r∈RNum

τ (g)
r

2

ni∑︂
j=1

Iri,j
(︂
Y r
i,j − η

r,(g)
i,j

)︂2
+

+
∑︂

r∈RPoi

ni∑︂
j=1

Iri,j
(︂
Y r
i,jη

r,(g)
i,j − exp

{︂
η
r,(g)
i,j

}︂)︂
+

+
∑︂

r∈RBin

ni∑︂
j=1

Iri,j
[︂
Y r
i,jη

r,(g)
i,j − log

(︂
1 + exp

{︂
η
r,(g)
i,j

}︂)︂]︂
+

+
∑︂

r∈ROrd

ni∑︂
j=1

Iri,j log
(︂
pY r

i,j−1 − pY r
i,j

)︂
+

+
∑︂

r∈RCat

ni∑︂
j=1

Iri,j log
[︄
η
r,(g)
i,j,Y r

i,j
− log

(︄
1 +

Kr−1∑︂
k=1

exp
{︂
η
r,(g)
i,j,k

}︂)︄]︄
(7.8)

up to an additive constant common to all clusters g = 1, . . . , G. From the similar-
ity to (6.11) we immediately see that hg is twice differentiable function, gradient
and negative Hess matrix of which can be evaluated in the same way as in Sec-
tion 6.2.3.

The rest of this section is dedicated to numerical approximation of the integral
of shape

∫︁
exp {hg(bi)} dbi, which is achieved by the methodology of Laplacian

approximation or adaptive Gaussian quadrature (AGQ) both summarized, for
example, by Pinheiro and Chao (2006). Since the primary goal is to approximate
the probabilities ui,g(θ), we often ignore unnecessary multiplicative constants in
the process. However, these constants may be important for evaluation of the
overall marginal pdf for observed outcomes (3.7), which is needed, for example,
to evaluate the contribution to the deviance DG

i (θ;Yobs
i , Ci). Keep in mind that

the probabilities (unew,g(θ)) could be evaluated even for a newly observed unit as
long as the observed outcomes Yobs

new and covariates Cnew are at disposal.

Laplacian approximation

Laplacian approximation uses Taylor expansion of function hg at its maximumˆ︁b(g)
i that can be found iteratively by Newton-Raphson method, see Algorithm 6.

Unlike its use for Metropolis proposal, here we are actually interested not only in

the negative Hess matrix H(g) = −
⎡⎣ ∂2hg(bi)
∂bi∂b⊤

i

⃓⃓⃓⃓
⃓
bi=ˆ︁b(g)

i

⎤⎦ but also in ˆ︁b(g)
i maximizing

the function hg and the value hg
(︂ˆ︁b(g)

i

)︂
.

Since ˆ︁b(g)
i maximizes function hg, the term corresponding to the first derivative

within the Taylor expansion vanishes and we obtain the following approximation

hg(bi) ≈ hg
(︂ˆ︁b(g)

i

)︂
− 1

2
(︂ˆ︁b(g)

i − bi
)︂⊤
H(g)

(︂ˆ︁b(g)
i − bi

)︂
.

Then,∫︂
exphg(bi) dbi ≈ exp

{︂
hg
(︂ˆ︁b(g)

i

)︂}︂ ∫︂
exp

{︃
−1

2
(︂ˆ︁b(g)

i − bi
)︂⊤
H(g)

(︂ˆ︁b(g)
i − bi

)︂}︃
dbi,

116



where the remaining integral reminds the density of multivariate normal distri-
bution with mean ˆ︁b(g)

i and variance matrix H−(g) :=
(︂
H(g)

)︂−1
. Hence,∫︂

exphg(bi) dbi ≈ exp
{︂
hg
(︂ˆ︁b(g)

i

)︂}︂
·
⃓⃓⃓
H(g)

⃓⃓⃓− 1
2

up to a multiplicative constant common to all clusters g = 1, . . . , G.
Finally, we can approximate the classification probabilities by

ui,g(θ) ≈
wg
⃓⃓⃓
Σ(g)

⃓⃓⃓− 1
2
⃓⃓⃓
H(g)

⃓⃓⃓− 1
2 exp

{︂
hg
(︂ˆ︁b(g)

i

)︂}︂
G∑︁

g′=1
wg′ |Σ(g′)|−

1
2 |H(g′)|−

1
2 exp

{︂
hg′

(︂ˆ︁b(g′)
i

)︂}︂ ,
numerators of which are again calculated on the log-scale first for computational
stability.

Adaptive Gaussian quadrature approximation

The Laplacian approach approximates the integral roughly by using the behaviour
of function hg at the single point ˆ︁b(g)

i . AGQ also works with approximation of
exp{hg(bi)} by a density of multivariate normal distribution NdR

(︂ˆ︁b(g)
i , H−(g)

)︂
,

however, it explores hg in multiple carefully chosen points and uses them for
approximation.

In one-dimensional quadrature based on N (0, 1) distribution, the set of NGQ

ideal points zj ∈ R, j = 1, . . . , NGQ is determined as roots of Hermite polyno-
mial Hn(x) = (−1)nex2 dn

dxn e
−x2 with n = NGQ. Each root has its own weight

vj = 2n−1n!
√
π/n2 [Hn−1(zj)]2. Then, the approximation of the integral of expo-

nentiated univariate function h is determined by
∫︂

exp{h(x)} dx =
∫︂

exp
{︂
h(x) + x2

}︂
e−x2 dx ≈

NGQ∑︂
j=1

wj exp
{︂
h(zj) + z2

j

}︂
.

In more dimensions (dR in our case), we create vectors zj := (zj1 , . . . , zjdR ),
elements of which are the Hermite polynomial roots indexed by j = (j1, . . . , jdR) ∈
{1, . . . , NGQ}d

R . Vectors zj of roots are ideal for the standardized case NdR (0, I)
and, therefore, are scaled by the inverse of Cholesky triangle

(︂
H(g)

)︂− 1
2 and shifted

by ˆ︁b(g)
i to obtain vectors ˜︁b(g)

i,j = ˆ︁b(g)
i +

(︂
H(g)

)︂− 1
2 zj ideal for NdR

(︂ˆ︁b(g)
i , H−(g)

)︂
.

Further, we incorporate the norm of zj into the weights Wj = exp {∥zj∥2}
dR∏︁
l=1

vjl .
Then, the integral can be approximated by∫︂

exp {hg(bi)} dbi ≈ (2π) dR
2
⃓⃓⃓
H(g)

⃓⃓⃓− 1
2
∑︂
j

exp
{︂
hg
(︂˜︁b(g)

i,j

)︂}︂
Wj

and the classification probabilities by

ui,g(θ) ≈
wg
⃓⃓⃓
Σ(g)

⃓⃓⃓− 1
2
⃓⃓⃓
H(g)

⃓⃓⃓− 1
2 ∑︁
j

exp
{︂
hg
(︂˜︁b(g)

i,j

)︂}︂
Wj

G∑︁
g′=1

wg′ |Σ(g′)|−
1
2 |H(g′)|−

1
2
∑︁
j

exp
{︂
hg′

(︂˜︁b(g′)
i,j

)︂}︂
Wj

.
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Note that case NGQ = 1 reduces to Laplacian approximation as z1 = 0 and
wj = 1 in such case. In applications, we recommend to use rather low value of
NGQ since there are NdR

GQ summands to be evaluated, which can be very expensive
to compute.

7.4 Basic numerical algorithms
We dedicate the following section to a few basic numerical algorithms referenced
during the thesis. These algorithms are broadly known, yet, we present them in
the form used for implementation of our methodology.

Cholesky decomposition

When the full-conditional distribution is evaluated or a new value is proposed
via Metropolis step, we often work with real symmetric positive-definite matri-
ces. André-Luis Cholesky proposed a decomposition into the product of a lower
triangular matrix and its transpose, which is roughly twice as efficient as the LU
decomposition for solving a system of linear equations. We provide a pseudocode
for the procedure in Algorithm 5. Beside that we use it for inverting variance
matrices and sampling from multivariate normal distribution.

If we wish to sample X ∼ Nd (V−1µ, V−1) (Sections 5.1.6, 5.1.9) and have
the Cholesky decomposition V = CC⊤, where C is lower triangular matrix, then
it is sufficient to sample Y ∼ Nd (C−1µ, I) and rescale it by

(︂
C⊤
)︂−1

since

(︂
C⊤
)︂−1

Y ∼ Nd

(︃(︂
C⊤
)︂−1

C−1µ,
(︂
C⊤
)︂−1

C−1
)︃

= Nd

(︂
V−1µ, V−1

)︂
.

The initial mean value C−1µ can be found simultaneously with the Cholesky
decomposition V = CC⊤ as a solution to Cx != µ, which is done by Algorithm 5.
Then, once the Gaussian noise is added to create Y , the later scaling by

(︂
C⊤
)︂−1

is a simple back-solving procedure for the system C⊤X
!= Y . Had the noise

not been added, we would obtain the mean value of the target distribution V−1µ

(a solution to Vx != µ in general).
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Algorithm 5 Cholesky decomposition A = CC⊤ and solution to Cx != b

procedure CholeskySolve(A, b)
▷ symmetric positive-definite matrix A of dimension d

▷ right-hand side b of dimension d
for i in 1 : d do

▷ diagonal element first
C[i, i] := A[i, i];
for k in 1 : i do

C[i, i] −= A[k, i] · A[k, i];
end for

if C[i, i] ≤ 0 then
Error: A is not positive-definite matrix!

end if
C[i, i] :=

√︂
C[i, i];

▷ forward-solving Cx != b
x[i] = b[i];
for l in 1 : i do
x[i] −= x[l] · C[i, l];

end for
x[i] /= C[i, i];

▷ remaining elements of column i
for j in (i+ 1) : d do

C[j, i] := A[j, i];
for k in 1 : i do

C[j, i] −= C[i, k] · C[j, k];
end for
C[j, i] /= C[i, i];

end for
end for
return C and x.

end procedure
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Newton–Raphson algorithm

Newton–Raphson method, named after Isaac Newton and Joseph Raphson, was
originally designed to find the roots of a real valued function. Alternatively,
we can view its multivariate version as a tool for finding ˆ︁ω ∈ Rκ maximising
twice differentiable function ℓ(ω) since the maximum solves ∂ℓ(ω)

∂ω
!= 0 and

negative Hess matrix is positive-definite matrix. We aim to use it primarily for
ℓ representing the log-pdfs of the full-conditional distributions in order to find
reasonable proposal distribution, see Section 6.2.

Starting from some initial value ω0, e.g. the maximum from the previous step,
we iteratively solve ⎡⎣− ∂2ℓ(ω)

∂ω∂ω⊤

⃓⃓⃓⃓
⃓
ω=ωk

⎤⎦ s != ∂ℓ(ω)
∂ω

⃓⃓⃓⃓
⃓
ω=ωk

.

to find the direction in which to move from current position ωk, see Algorithm 6
for details. The procedure is ended when the norm of the step s is below the
tolerance level ϵ. This procedure yields ˆ︁ω as well as the basis for the precision
matrix Ω−1 of the incremental distribution.

The notation of the Algorithm 6 is deceptively simple. We use it for ℓ(ψ| · · · )
symbolizing the log-pdf of the target (full-conditional) distribution of ψ ∈ Ψ.
Hence, the functions Ell, GradEll and HessEll need to adaptively change
with the other parameters for every iteration of the MCMC sampler.

Moreover, there have to be added some checking rules to prevent divergence,
overshooting or other failures∗. For example, limit the number of iterations by
a maximal count. If it fails to complete in time or diverges then try different
starting point. If the problem is encountered too many times for different starting
points then keep the current proposal distribution and update it next time.

∗Although all the negative Hessian matrices are positive-definite (usually due to the contri-
bution of prior distribution in the form of diagonal positive-definite matrix), the task of finding
a solution to the system of equations may be ill-conditioned (high condition number). The
contribution of the prior distribution may also have a wild impact on the function behaviour
near the root, hence, the overshooting and divergence.
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Algorithm 6 Newton–Raphson method to maximise ℓ(ω)
Used functions:
Ell(ω) ▷ returning value ℓ(ω)

GradEll(ω) ▷ returning gradient ∂ℓ(ω)
∂ω

HessEll(ω) ▷ returning negative Hess matrix − ∂2ℓ(ω)
∂ω∂ω⊤

CholeskySolve(A, b) ▷ returning C from A = CC⊤ and solution to Cx != b

BackSolve(C, b) ▷ returning solution to C⊤x
!= b with C upper triangular

procedure NewtonRaphson(ω0, ϵ) ▷ starting point and tolerance
∥s∥ ← ∞;
k ← 0;
while ∥s∥ > ϵ do
g ← GradEll(ωk);
H ← HessEll(ωk);
C, b← CholeskySolve(H, g);
s← BackSolve(C, b); ▷ solution to Hx != g
ωk+1 := ωk + s;
compute ∥s∥;
k ← k + 1;

end whileˆ︁ω := ωk;
return ˆ︁ω or even Ell( ˆ︁ω), GradEll( ˆ︁ω), HessEll( ˆ︁ω).

end procedure
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k-means clustering

As discussed in Chapter 3, multivariate data often tend to form into clusters
without the prior knowledge of the true allocation of each data point. The goal
of unsupervised clustering is to learn the ideal partition from the data. Favourite
distance-based solution is the k-means algorithm dividing the data into k clusters
concentrated around k centroids. The first fundamental ideas for the k-means
clustering appeared in 1956 and one year later Stuart Lloyd proposed the standard
naive algorithm to obtain a locally (not globally) optimal partition.

Let us assume that the rows of matrix X ∈ Rn×d are the independent d-variate
data points xi, i = 1, . . . , n. The naive algorithm starts with k initial centroids
µ0

1, . . . ,µ
0
k ∈ Rd, perhaps, cluster means of a random partition. And then iterate

the following two steps (and increase the counter j) until the convergence is met
(no change in the partition):

1) Assign each data point i to the group with the closest centroid (in terms of
Euclidean distance ∥ • − ⋆ ∥):

U j
i = arg min

g∈{1,...,k}

⃦⃦⃦
xi − µj−1

g

⃦⃦⃦
.

2) Compute the means in each cluster and use them as the next centroids:

U jg := {i : U j
i = g, i = 1, . . . , n} and µjg := 1⃓⃓⃓

U jg
⃓⃓⃓ ∑︂
i∈Uj

g

xi.

The naive algorithm suffers from slow convergence since it spends a lot of
time computing the distances of points from the centroids, which in most cases
is unnecessary since the majority of data points after few initial iterations stay
within the same cluster. Hence, Hartigan and Wong (1979) proposed a completely
different method for updating the partition. They base their update step on the
individual cost φ(Ug) of a cluster Ug ⊂ {1, . . . , n} defined by

φ(Ug) :=
∑︂
i∈Ug

(xi − µg)⊤(xi − µg)

where µg is the centre of the cluster g. Starting from an initial partition, a point
maximizing the given criterium ∆ switches to a different cluster at each iteration
until no optimal change is available, see Algorithm 7 for details.

For efficient computation of ∆(i, g) it is crucial to effectively evaluate φ of
a cluster after addition or deletion of a single data point:

xn := 1
n

n∑︂
i=1
xi, φn :=

n∑︂
i=1

(xi − xn)⊤ (xi − xn) ,

xn−1 = n

n− 1xn −
xn
n− 1 , φn−1 =φn −

n

n− 1 (xn − xn)⊤ (xn − xn) ,

xn+1 = n

n+ 1xn + xn+1

n+ 1 , φn+1 =φn + n

n+ 1 (xn+1 − xn)⊤ (xn+1 − xn) .

The values φ
(︂
U jg
)︂

are computed for the initial partition and then updated only
for the changed clusters, no need to compute them repeatedly. The same holds
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even for ∆(i, g) where i ̸= ˆ︁i and g ̸= ˆ︁g (optimal pair from the previous step),
which is where the computational time is saved compared to the naive algorithm.

Nevertheless, these changes only speed up the calculation. The algorithm
still ends up with locally optimal solution, the globally optimal solution is not
guaranteed. Initialization by different partitions may help to improve the final
solution, however, the global optimality cannot be assured.

We utilize the implemented function kmeans from base where the version
by Hartigan and Wong (1979) is the default choice.

Algorithm 7 k-means clustering by Hartigan and Wong (1979)
procedure kMeansHW(X, k) ▷ n× d data matrix and number of clusters

Initialize the partition of the data into k clusters U0
1 , . . . ,U0

k ;
▷ e.g. U0

i
iid∼ Unif {1, . . . , k} and U0

g := {i : U0
i = g, i = 1, . . . , n}

j = 0;
repeat

for i in 1 : n and g in 1 : k do ▷ only some pairs require the update
∆(i, g) := φ

(︃
U j
Uj

i

)︃
+ φ

(︂
U jg
)︂
− φ

(︃
U j
Uj

i

\ {i}
)︃
− φ

(︂
U jg ∪ {i}

)︂
;

▷ the change in the cost when i switches to cluster g
end for(︂ˆ︁i, ˆ︁g)︂ := arg max

i∈{1,...,n}, g∈{1,...,k}
∆(i, g); ▷ pair maximizing the change

˜︁g := U jˆ︁i ; ▷ cluster where ˆ︁i currently belongs to

if ∆
(︂ˆ︁i, ˆ︁g)︂ < 0 then

leave the repeat cycle;
▷ no better partition achieved by switching a single data point

else
U j+1
i := U j

i and U j+1
g := U jg ; ▷ other clusters remain the same

U j+1ˆ︁i := ˆ︁g, U j+1˜︁g := U j˜︁g \ {︂ˆ︁i}︂ and U j+1ˆ︁g := U jˆ︁g ∪ {︂ˆ︁i}︂;
▷ switch the data point ˆ︁i to cluster ˆ︁g

end if
j ← j + 1;

until ∆
(︂ˆ︁i, ˆ︁g)︂ < 0 ▷ no change in the partition

return partition {U j1 , . . . ,U jk} and means µj1, . . . ,µjk.
end procedure
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8. Analysis of the EU-SILC
In Chapter 1 we introduced the EU-SILC dataset that gathers data from Euro-
pean households regarding their financial situation and quality of life. We have
presented the highly correlated outcomes of interest as well as covariates poten-
tially effecting these outcomes.

Within this chapter we apply only the most recent GLMM-based model to
this dataset since it provides several advantages. First of all, it is able to work
with Yes / No / No cannot outcomes as general categorical and not necessarily
ordinal. Then, we do not have to exclude several households for not delivering
some of the outcomes. Moreover, our specification of the model predictor can be
tailored specifically to fit our goals.

And that is to model the chosen outcomes of different nature jointly by one
statistical model, which can evaluate the effects of covariates. Since we hypothe-
sise that the economical crisis had serious impact on the financial situation of the
households (either positive, negative or none), we are particularly interested in
the exploration of evolution in time. We expect to find clusters of different trends
depicting the capabilities to cope with such a crisis.

8.1 The model setting
First, we had to adequately pair households from the longitudinal dataset to
the ones in the cross-sectional dataset to obtain outcomes and covariates not
included within the longitudinal dataset, such as the household type. The data
from each year are stored in separate files, hence, there would be multiple repeated
data rows, had only the records from the year the household is observed for the
last time not been used. The household module (H-file) is the source of the
outcomes measured at household-level, however, some of the covariates (presence
of a student, a baby, highest ISCED achieved) had to be aggregated from the data
measured at person-level (P and R-file) within the household. After merge and
aggregation the households not observed for the whole period of four consecutive
years were disregarded. The same fate befell households with missing covariate
values (missing values of the outcomes were allowed since the implementation
of the GLMM-based model overcomes this issue). After this data pre-processing
we were left with n = 27 386 Czech households observed for exactly ni = 4
consecutive years between the years 2005 and 2020.

All 8 outcomes introduced in Section 1.3.2 (two for each type excluding the
count type) were modelled jointly through our GLMM-based model. The numeric
outcomes (Equivalised total disposable income and Lowest income to make ends
meet) were log-transformed to better fit the assumption of normal distribution
behind. In some instances of negative disposable income, we had to replace
the log-value by zero. Other categorical outcomes were transformed to values
0, 1, . . . , Kr − 1 to fit our model assumptions, where the zero level corresponds
to the baseline categories. For the binary outcomes 0 = No, for the general
categorical 0 = Cannot and for the ordinal outcomes zero corresponds to the
poorest category (with great difficulty and a heavy financial burden). Hence, all
the outcome values are aligned to have the same interpretation; the higher value
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the more rich the household is considered.
To join these 8 outcomes we suppose single random intercept term for each of

them resulting in the random effects vector bi ∈ R8. The random intercepts for
general categorical outcomes are not specific to each category level and compare
only the baseline category Cannot with the rest. Hence, the relationships among
outcomes are described by the correlations hidden in 0 < Σ ∈ R8×8 among the
random intercepts. Since the categories are ordered and aligned with the income
variables, only positive correlations are expected to be found.

The fixed effects structure is far richer. For all outcomes of interest it con-
sists of all the covariates listed in Section 1.3.3 in a proper parametrization.
Since the economical crisis can have both immediate and long-lasting effects, the
parametrization of time (Ti,j) needs to be very flexible. Hence, we use quadratic
B-spline (Sk) parametrization with 5 equidistant knots in the interval [0, 16) (in-
cluding the boundary ones), which takes five β parameters denoted by β1, . . . , β5
when excluding the random intercept. The Equivalised household size (W as
weight) enters the predictor in a linear form (with βW ) shifted by 1 correspond-
ing to a single-adult household. Other covariates are of categorical nature and
each non-baseline category has its own effect. For example, the Level of urban-
isation has effects βU2, βU3, βU4 comparing other areas with the baseline rural
area. Similarly, we denote the effects for Presence of a baby, a student by βB,
βS; for education by βE2, βE3; for the Dwelling type by βD2, . . . , βD5 and for the
Household type by βH6, . . . , βH13 with type 5 (one person household) as baseline.
Denoting the covariates analogously the predictor becomes:

ηri,j = bri + β0,r +
5∑︂

k=1
βk,rSk(ti,j) + βW,r(Wi,j − 1) +

4∑︂
k=2

βUk,r1(Ui,j=k) + βB,rBi,j+

+ βS,rSi,j +
3∑︂

k=2
βEk,r1(Ei,j=k) +

5∑︂
k=2

βDk,r1(Di,j=k) +
13∑︂
k=6

βHk,r1(Hi,j=k) (8.1)

for any outcome r ∈ R, household i = 1, . . . , n and observation j = 1, 2, 3, 4.
However, the primary goal is to divide the households into groups differing

in the evolution in time (different types of impact of the economical crisis). We
could simply assume all the unknown parameters to be cluster-specific, however,
that would result in enormous amount of parameters and describing them all
would be exhausting. Hence, we make cluster-specific only those parameters
which parametrize the effect of time: the intercept term β0, ordered intercepts
for ordinal outcomes c and primarily the effects of spline bases β1, . . . , β5. Other
model parameters (the rest of fixed effects, variance matrix Σ) are considered
to be common to all groups with the exception of parameter τ describing the
variability of error terms of numeric outcomes for which we try both settings.
The predictor (8.1) for group g becomes

η
r,(g)
i,j = bri +β

(g)
0,r +

5∑︂
k=1

β
(g)
k,rSk(ti,j) +βW,r(Wi,j−1) +

4∑︂
k=2

βUk,r1(Ui,j=k) +βB,rBi,j+

+ βS,rSi,j +
3∑︂

k=2
βEk,r1(Ei,j=k) +

5∑︂
k=2

βDk,r1(Di,j=k) +
13∑︂
k=6

βHk,r1(Hi,j=k). (8.2)

Since the number of groups is not known in advance, we employ the sparse
finite mixtures by setting the hyperparameters of the prior (4.12) to ae = 1 and
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be = 100 and supposing Gmax = 20 underlying clusters, some of which may end
up empty. Only the remaining ˆ︁G+ non-empty clusters will be considered and
interpreted. The rest of hyperparameters are set up to induce prior distribution
of unit variance rather then fully uninformative priors (of high variance) since it
encourages the shrinkage and by doing so cuts off the redundant mixture com-
ponents, see the discussion in Section 6.3. Several thousands of burn-in draws
were sampled prior the final inference based on M = 10 000 posterior draws.
All the states of the final chains used for inference suggested the same number
of non-empty clusters ˆ︁G+ and quick overview of the traceplots did not indicate
any label-switching problems, hence, post-processing procedure (Algorithm 3) was
unnecessary.

8.2 Results
First, we address the problem of unknown number of underlying clusters. Surpris-
ingly, our method provides two contradictory answers depending on the cluster-
specificity of the parameter τ . On one hand, we have discovered ˆ︁G+ = 6 groups
when each numeric outcome r ∈ RNum has its own precision parameter τ (g)

r . On
the other hand, there are ˆ︁G+ = 11 non-empty clusters when there is only one τr
common to all clusters.

Figure 8.1 compares these two options in terms of the most important outcome
- Equivalised total disposable income. The plots on the left show posterior median
curves for the baseline households in each cluster. We immediately see that the
obtained results are far from the expected. The curves do not differ that much
in the actual shape but more in the intercept that shifts them. It seems that the
within variability of the households is much more decisive for the clustering than
the trend itself. When all the clusters have to keep the same variability around
the curves there is much more room to focus on the trend itself. However, since
we observe one household for a limited time window while the overall time span is
much larger, it is forced to stay with a general trend. Moreover, the Equivalised
total disposable income is not the only modelled outcome, the other outcomes
surely contribute to the partition in some way. If some splines in Figure 8.1b
coincide, there exists some outcome for which the two spline curves of evolution
differ more. And that is, perhaps, the reason behind the large number of clusters
since many combinations are viable. Once the precisions gain their freedom, the
model notices that it is much more suitable to divide the households based on
the income changes from year to year. Hence, majority of households evolve
steadily (high precision τ (g)

r ), while the remaining ones encounter sudden up-
and-down shocks (as seen later in Figure 8.2). The last violet cluster is even
more special since it covers around 30 households of temporary negative total
disposable income which were imputed by 0 instead of undefined log-value. This
jump to zero is accompanied by remarkably low precision τ (6)

r . Hence, this cluster
should be considered as a cluster of outliers. For the simplicity of the six-cluster
solution under group-specific τ (g)

r , we chose this setting for the further analysis.
Next, we explore the relationships among the outcomes. To be precise, co-

variance matrix Σ describes directly only the relationships among the random
intercepts, which manifest into the marginal associations between the outcomes
once the random effects are integrated out (see Section 2.4). The matrix Σ can be
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Figure 8.1: EU-SILC dataset. Estimated spline curves of Equivalised total dis-
posable income based on posterior medians of the β(g) coefficients in non-empty
clusters for a baseline household (left) and the posterior distribution of the pre-
cision parameter τr (right).
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decomposed into the correlation matrix squeezed between the diagonal matrices
with standard deviations, posterior medians of which are

(0.11, 0.12, 3.36, 3.46, 2.88, 2.94, 3.05, 3.35)⊤ .

The posterior medians of the correlations take the following form:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.00 0.37 0.48 0.45 0.45 0.33 0.37 0.34
0.37 1.00 0.03 −0.03 −0.06 −0.04 0.05 0.04
0.48 0.03 1.00 0.80 0.74 0.58 0.54 0.48
0.45 −0.03 0.80 1.00 0.74 0.56 0.53 0.47
0.45 −0.06 0.74 0.74 1.00 0.80 0.60 0.52
0.33 −0.04 0.58 0.56 0.80 1.00 0.50 0.45
0.37 0.05 0.54 0.53 0.60 0.50 1.00 0.74
0.34 0.04 0.48 0.47 0.52 0.45 0.74 1.00

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where each row corresponds to the random intercept of the corresponding outcome
(in order in which the outcomes are introduced in Section 1.3.2, from numeric,
binary, ordinal to general categorical outcomes). As expected, the correlations
are mostly positive and definitely not negligible, which confirms the positive as-
sociation among the considered outcomes. The highest observed correlations are
understandably between the binary outcomes (Affordability of a one week holiday
and Afford to pay for unexpected expenses) and the ordinal outcomes (Ability to
make ends meet and Financial burden of the total housing cost). On the other
hand, the Lowest income to make ends meet (second row) is related only to
the Equivalised total disposable income (higher income promotes more luxurious,
thus, more expensive life style) but barely relates to any other outcome.

The households were classified based on the sampled allocations Um
i according

to the rule (P1); household remained unclassified when the most frequent clus-
ter label did not overcome the 60% threshold. There were 6.38% of unclassified
households in total. The purpose of Figure 8.2 is to show the differences among
the discovered clusters under group-specific precisions τ (g)

r across all modelled
outcomes. For the numeric outcomes we displayed longitudinal profiles of rep-
resentatives of each of the clusters (thin lines) and corresponding splines curves
(bold lines) that belong to a household of two adults of secondary education
with one child (student) living in a detached house in a town (posterior median
of the predictor treated as a parametric function). The evolution of categori-
cal outcomes is depicted by the proportions in each cluster and year separately,
where the difference between the clusters lies primarily in the magnitude of the
proportions and less notably in the evolution over time.

The last (purple) cluster (0.11%) are the outliers in the Equivalised total dis-
posable income. The turquoise cluster (1.31%) is also very thin and appears to
be the poorest due to the long low-placed slightly decreasing curve in the income,
the proportions of the negative categories appear to be the highest among all
clusters. The much larger orange cluster (32.70%) resembles the turquoise in
the proportions of categorical outcomes but enjoys much higher non-decreasing
income. More importantly, the precision is the highest among all clusters (Fig-
ure 8.1), which is in accordance with barely changing individual curves. The
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green cluster (6.80%) follows the same curves as the orange cluster, however, the
precision is reduced and the proportions in binary outcomes are more favourable.
Moreover, the vast majority of green households possess a computer unlike the
orange ones which do not despite being able to afford it. The remaining two
clusters both have the highest Equivalised total disposable income among them
all. The households within the red cluster (4.03%) are, however, more inclined
towards the shock jumps between the years due to the precision as low as in the
turquoise cluster. On the other hand, the households within the largest (blue)
cluster (48.66%) are far more stable (almost as in the orange cluster). The red
and the blue cluster also achieve the best ratios of the positive categories.

The effects of time are by (8.2) the only source of the difference among the
groups. The remaining covariates were assumed to have the same effect in each
cluster. There has been dF

r = 20 fixed effects coefficients per one outcome, which
is difficult to interpret in full completeness. Hence, we present only the effects
(multiplied by 100 to improve readability) for the log-transformed numeric out-
comes Equivalised total disposable income and Lowest income to make ends meet
in Table 8.1. It presents the posterior medians together with 95% ET credible
intervals, many of which do not cover zero. This suggests significant effects of the
chosen covariates. Naturally, the more urbanized the area where the household
is situated the higher income (and the lowest income required) is expected. The
size of the household decreases the Equivalised total disposable income, while nat-
urally Lowest income to make ends meet grows with the size. Households with
babies or students have lower disposable income, but presence of a student in-
creases the necessary monthly income. Without any doubt, the higher education
level achieved results in much higher income. The differences between dwelling
types with respect to the disposable income are negligible (maybe with exception
of semi-detached house compared to other types). However, the flats are less
demanding on the necessary monthly income compared to a detached house. The
composition of the household gives similar results to those seen in Figure 1.7.
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Table 8.1: EU-SILC dataset. Posterior medians of the fixed effects of numeric
outcomes common to all clusters including 95% equal-tailed credible intervals.

Parameter Numeric outcome

Log(Equivalised total disposable income) Log(Lowest income to make ends meet)

100βU2 1.25 (0.81; 1.55) 0.57 (0.20; 0.88)
100βU3 2.02 (1.46; 2.40) 1.78 (1.30; 2.20)
100βU4 7.93 (7.33; 8.71) 10.07 (9.56; 10.59)
100βW −6.64 (−7.33;−5.93) 7.49 (6.75; 8.50)
100βB −3.88 (−4.21;−3.54) −1.62 (−1.97;−1.22)
100βS −0.92 (−1.22;−0.60) 0.49 (0.20; 0.78)
100βE2 9.12 (8.51; 9.78) 8.29 (6.77; 8.79)
100βE3 17.38 (16.77; 18.03) 11.15 (10.11; 11.70)
100βD2 0.65 (0.24; 1.02) 0.15 (−0.28; 0.63)
100βD3 0.21 (−0.33; 0.61) −0.34 (−0.86; 0.06)
100βD4 0.24 (−0.23; 0.51) −0.30 (−0.73; 0.00)
100βD5 1.00 (−0.51; 2.28) 1.78 (0.32; 3.30)
100βH6 14.68 (14.12; 15.62) 13.90 (13.43; 14.55)
100βH7 9.65 (8.98; 10.05) 11.97 (11.30; 12.56)
100βH8 21.42 (20.47; 22.74) 18.55 (17.60; 19.38)
100βH9 3.11 (2.32; 3.91) 12.23 (11.46; 13.02)
100βH10 15.24 (14.44; 16.31) 18.60 (17.87; 19.44)
100βH11 14.22 (13.17; 15.33) 20.49 (19.25; 21.39)
100βH12 14.39 (13.13; 15.61) 21.28 (19.68; 22.63)
100βH13 19.79 (18.50; 21.17) 20.06 (18.76; 21.19)
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Figure 8.2: EU-SILC dataset, GLMM-based model, Gmax = 20, ˆ︁G+ = 6. Es-
timated group-specific spline curves for a typical family by posterior median.
Proportions of categorical outcomes wrt time separately in each cluster.
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Conclusion
Two classes of statistical models for a set of longitudinal outcomes of diverse na-
ture have been proposed. Combination of potentially highly correlated outcomes
was allowed due to joint distribution of random effects of underlying mixed models
capturing the main association structure. A model-based clustering framework
was adopted to divide the units into groups of different characteristics and, hence,
to capture potential heterogeneity within the data. Hierarchical nature of the two
models was then exploited within a fully Bayesian approach and MCMC samplers
to explore the posterior distribution of the model parameters and characteristics
were theoretically justified. MCMC samplers elegantly evade the integration with
respect to the latent elements. In case the posterior distribution of classification
probabilities or even the model deviance is of interest, we face the unpleasant inte-
grals with a rather expensive numerical approach for evaluation of the likelihood
contribution of a single unit. The implementation within the environment
provides the user with full flexibility to specify not only the prior distribution
and tuning parameters but most importantly the set of group-specific parameters
that distinguish the clusters. The functionality of our methods (ability to esti-
mate the true model parameters and to correctly classify the units) was tested in
the simulation studies with relatively positive results. Using only the biomarkers
repeatedly observed during the first 910 days we have successfully divided pa-
tients from the PBC study into two groups differing in the prognosis for their
survival. We have also identified several groups of Czech households differing in
the stability of their income, ability to pay for the usual expenses, such as housing
costs, and ability to afford luxuries such as a car, a computer or a holiday away
from home.

The initial threshold concept model summarized in Section 4.4.1 is only able
to model numeric, binary and ordinal outcomes. There is a simple reason behind
this decision. The threshold concept used here allows us to transfer the binary
and ordinal outcomes into the remaining case of a numeric outcome. Hence,
the heart of the model is the multivariate normal linear mixed-effects model.
Consequently, all the full-conditional distributions fall into the well known distri-
butional families, which allows for direct implementation of the Gibbs sampler.
Despite the straightforward implementation, there has occurred a problem of slow
convergence of γ thresholds to the stationary distribution. The numerical evalu-
ation of the likelihood involved integration of highly-dimensional normal density
over a multivariate interval, for which another MCMC-based technique is used.
This makes the evaluation of the posterior distribution of the model deviance
very expensive. Since the capabilities of the model were still far from our ideal
solution, we continued in the research.

We removed the threshold concept and replaced it with the GLMM framework
(Section 2.2) which offers plenty of distributional families – logistic regression for
binary outcomes, ordinal logit regression for ordinal outcomes and, additionally,
multinomial logit regression for general categorical outcomes and log-linear mixed
model for count outcomes, which has lead to the so called GLMM-based model
summarized in Section 4.4.2. This leads no longer to familiar full-conditional
distributions of some of the parameters, hence, corresponding steps are replaced
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with Metropolis proposals. In order to make the proposals more efficient and to
spare the user of tuning we have also included a methodology for an automated
suggestion of the proposal distribution parameters. Moreover, the implementa-
tion accounted for missing outcome values by making them yet another model
parameters to be sampled, hence, predictive distributions for the missing values
are in the end at disposal. The most important extension lies within the sparse
finite mixture which encourages the sampler to abandon the unpromising mixture
components only to end up with an optimal number of non-empty components,
thus, estimate the number of groups without any prior knowledge. Another ben-
efit is that the fixed part of the predictor has been divided into a group specific
part and a part common to all clusters, which provides the user with even higher
flexibility in the specification of the differences among clusters. If one settles with
a crude Laplace approximation of the likelihood contribution, the exploration of
the posterior of classification probabilities and deviance is less time-consuming
than for the first model. However, more precise approximation of the multivariate
integral with respect to random effects via adaptive Gaussian quadrature could
potentially be even more expensive.

There are many possible directions for the future research to further enhance
the methodology developed in this thesis. One very straightforward way would be
to extend the GLMM-based model to any possible combination of distributional
family and link functions. Here we assumed only one particular choice for each
type of the variable, which is limiting especially for the numeric outcomes. Cer-
tainly, there are circumstances where no suitable transformation exists to solve
non-normality issues. The separate models would still be possible to join through
the joint distribution of random effects given by the covariance matrix Σ.

The matrix Σ also needs a careful attention. One should note that its di-
mension rises with the number of modelled outcomes and the complexity of the
random effects structure. Hence, it may prove useful to abandon the complete
generality and replace the completely general design of Σ with a commonly used
block-structured variance matrix. However, the sampling mechanism for such Σ
would have to be updated to reflect the implied restriction of the space of all
positive-definite matrices.

Moreover, we have examined the properties of our methodology under a rather
low number of outcomes so far. Additional work may thus focus on a much higher
number of measured outcomes and possibly on an evaluation of their relevance
towards clustering using, for example, methods presented by Raftery and Dean
(2006). The variable selection process could also be extended to the regression
part of the model, which could help the analyst with evaluation of the importance
of individual β parameters (or their groups). With some innovative approach we
could not only determine the significance of the effect (or groups of effects) but
also evaluate the importance with respect to the clustering. However, that would
require additional research.

Finally, the whole methodology was implemented as a set of routines in-
tegrated into (R Core Team, 2022). Researchers interested in the use of
our models can access the implementation via Github at https://github.com/
vavrajan/. Follow the tutorial to learn how to use the functions including the
input data preparation and the output data analysis.
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R. De la Cruz-Meśıa, F. A. Quintana, and G. Marshall. Model-based clustering
for longitudinal data. Computational Statistics & Data Analysis, 52(3):1441–
1457, 2008. doi: 10.1016/j.csda.2007.04.005.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society. Series
B (Methodological), 39(1):1–38, 1977. doi: 10.1111/j.2517-6161.1977.tb01600.x.

M. J. Denwood. runjags: An R package providing interface utilities, model tem-
plates, parallel computing methods and additional distributions for MCMC

135

https://ec.europa.eu/eurostat/web/microdata/european-union-statistics-on-income-and-living-conditions
https://ec.europa.eu/eurostat/web/microdata/european-union-statistics-on-income-and-living-conditions


models in JAGS. Journal of Statistical Software, 71(9):1–25, 2016. doi:
10.18637/jss.v071.i09.

E. R. Dickson, P. M. Grambsch, T. R. Fleming, L. D. Fisher, and A. Langworthy.
Prognosis in primary biliary cirrhosis: Model for decision making. Hepatology,
10(1):1–7, 1989. doi: 10.1002/hep.1840100102.

S. Fieuws and G. Verbeke. Joint modelling of multivariate longitudinal profiles:
Pitfalls of the random-effects approach. Statistics in Medicine, 23:3093–3104,
2004. doi: 10.1002/sim.1885.

S. Fieuws and G. Verbeke. Pairwise fitting of mixed models for the joint modeling
of multivariate longitudinal profiles. Biometrics, 62(2):424–431, 2006. doi:
10.1111/j.1541-0420.2006.00507.x.

C. Fraley and A. E. Raftery. Model-based clustering, discriminant analysis, and
density estimation. Journal of the American Statistical Association, 97(458):
611–631, 2002. doi: 10.1198/016214502760047131.
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